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Algebra, Topology and Analysis: C∗ and A∞ Algebras

M. Bakuradze, A. Gogatishvili, R. Meyer, R. Surmanidze

Summer School/Conference “Algebra, Topology and Analysis: C∗ and A∞ Algebras” was the third
event in the summer school series (http://www.mathphd.tsu.ge) within the framework of the Interna-
tional Doctoral Program in Mathematics at Ivane Javakhishvili Tbilisi State University, supported
by the Shota Rustaveli National Science Foundation and the Volkswagen Foundation. The event was
held in Gonio, Batumi, Georgia from 30 August to 3 September 2021.

The two summer schools before were

• Harmonic Analysis, Martingales & Paraproducts, September, 2-6, 2019, Bazaleti, Georgia;

• Operator Algebras, Spectral Theory & Applications to Topological Insulators, September 17-21,
2018, TSU, Tbilisi.

Gonio summer school/conference mainly addressed graduate students and postdoctoral researchers
and covered range of topics from algebra, topology and analysis. Plenary talks focused on C∗ and
A∞ algebras.

C∗-algebras are the abstract context for understanding self-adjoint operators in Hilbert spaces and
go back to quantum mechanics by von Neumann, Heisenberg, and Schrodinger in the 1920s. For the
basics we refer the reader to

- https://math.berkeley.edu/ qchu/Notes/208.pdf;

- https://math.berkeley.edu/∼brent/files/209−notes.pdf.

For A∞ algebras we refer to

- https://arxiv.org/pdf/math/9910179.pdf.

The following contain lectures by:

Tornike Kadeishvili A∞-Algebra Structure in Cohomology and its Applications;

Karen Strung Smale Spaces and Their C∗-Algebras;

Bhishan Jacelon Concentration of Measure;

Andrey Krutov Torwads to Noncommutative Dynamical Systems;

George Nadareishvili Approximations of Kasparov Categories of C∗-Algebras;

Karmen Grizelj Harish–Chandra Map and Primitive Invariants.

Organizers:

M. Bakuradze, V. Baladze, A. Beridze, T. Bokelavadze, A. Gogatishvili, R. Meyer, O. Purtukhia,
R. Surmanidze.

Other contributing participants:

A. Abak, D. Adamadze, N. Bokaev, S. Meereboer, K. Ospanov, K. Razmadze, B. Tuerdebieke.

Tbilisi, January 5, 2023
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Harish–Chandra Map and Primitive Invariants

Karmen Grizelj, Pavle Pandžić

Let g be a semisimple complex Lie algebra. For every x ∈ g define the adjoint action of x on g by
adx(y) = [x, y], y ∈ g. Note that adx ∈ End(g). The Killing form on g is a symmetric bilinear form

B(x, y) = tr(adx ady), x, y ∈ g.

The adjoint action of g can be extended to the Clifford algebra C(g) of g, the exterior algebra ∧g
of g, and the universal enveloping algebra U(g) of g. Those extensions will be denoted in the same
way as the original action.

Denote by J the space of g-invariants in ∧g, that is

J =
(
∧ g
)g

=
{
x ∈ ∧g : ady(x) = 0, ∀ y ∈ g

}
.

Consider the augmentation ideal of J :

J+ =
∑
k>0

J (k), J (k) = J ∩ ∧kg.

The bilinear form B extends to ∧g by determinant, in particular to J . Define the space of primitive
invariants P as the B-orthogonal complement of J+ ∧ J+ in J+.

Theorem 1 (Hopf–Koszul–Samelson, see [5]). The dimension of the space P is equal to the rank of
g and the inclusion P ↪→ J extends to an isomorphism of algebras ∧P → J .

Consider a g-module isomorphism q : ∧g → C(g). If Zi denotes an orthonormal basis of g with
respect to B, then the map is defined by

q(Zi1 ∧ Zi2 ∧ · · · ∧ Zik) = Zi1Zi2 · · ·Zik , q(1) = 1.

This map is called the Chevalley map or quantization map.

Let the map σ : ∧g→ g be defined by σ = (−1)
k(k−1)

2 id on ∧kg. For p, q ∈ ∧g, set

B0(p, q) := B(σ(p), q).

Theorem 2 ([4]). The space q(J) is a Clifford algebra of P with a bilinear form B0.

Define a map α : U(g)→ C(g) in the following way: let bi be a basis of g and di its B-dual basis.
For x ∈ g set

α(x) =
−1

4

∑
[x, bi]di ∈ C(g).

Using the universal property, extend this map to the universal enveloping algebra of g. Denote the
image of α by E.

Fix a system of positive roots in g and let ρ be the half of the sum of positive roots in g. Denote
by Vρ the irreducible representation with the highest weight ρ. The following theorem is known as
the ρ-decomposition.

Theorem 3 ([4]). We have E = EndVρ and C(g) = E ⊗ J .

For x ∈ g, let ιx : ∧g → ∧g denote the contraction by x, that is ιx(y) = B(x, y) for y ∈ g ∼= ∧1g
and extend it to a derivation of degree −1 on ∧g.

Theorem 4 ([4]). We have q(ιx(p)) ∈ E, ∀x ∈ g, p ∈ P .
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Theorem 5 ([4]). Denote by pi a basis of P and by qi its dual basis with respect to B0. Then, for all
x ∈ g we have x =

∑
ιx(pi)qi.

Let g = n+ ⊕ h⊕ n− be a triangular decomposition of g (see [3] for details), so

C(g) = C(h)⊕
(
n+C(g) + C(g)n−

)
.

Define the Harish–Chandra map µ : C(g)→ C(h) as the projection with respect to this decomposition.
Note that the map µ is not an algebra homomorphism.

Theorem 6 ( [1]). The map µ : C(g)h → h is an algebra isomorphism. Furthermore, it restricts to a
linear bijection between P and h.

Let G be a reductive Lie group, hence there is a Cartan involution on g, see, for example, [3, § 1].
Let g = k⊕ p be the Cartan decomposition and let h be the fundamental Cartan subalgebra, in other
words h = t ⊕ a and t is a Cartan subalgebra of k. If we denote by G a Lie group such that g is its
Lie algebra and by K its maximal compact subgroup, then the cohomology of G/K is the same as
k-invariants in ∧p.

Let g = sl(2n+ 1,R), so k = so(2n+ 1). Let ei be a basis of p and fi its B-dual basis. Then the
map α : U(k)→ C(p) is defined in this way: for x ∈ k, we have

α(x) =
∑

[x, ei]fi

and then extend it to U(k) using the universal property.

Theorem 7. [2, 6] The algebra C(p) admits the ρ-decomposition:

C(p) = E ⊗ J = α(U(k))⊗ C(p)k.

Define a Harish–Chandra map µ as the projection from C(p) to C(a), with respect to the following
direct sum:

C(p) = C(a)⊕
(
(n+ ∩ p)C(p) + C(p)(n− ∩ p)

)
.

Theorem 8. The map µ : C(p)k → C(a) is an algebra isomorphism.

Conjecture 1. We have ιx(p) ∈ E, ∀x ∈ p, p ∈ P (p).

The conjecture is verified in some examples. The next conjecture is a corollary of Conjecture 1.

Conjecture 2. The map µ is an isomorphism of vector spaces P (p) and a.
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Concentration of Measure

Bhishan Jacelon

Abstract

Isoperimetric inequalities imply that, probabilistically, Lipschitz functions on high dimensional
geometric structures are approximately constant. This phenomenon is known as ‘concentration
of measure’. In this brief introduction, I will describe these geometric situations and discuss ex-
amples related to dynamical systems, in particular, groups of measure-preserving automorphisms
of Lebesgue space, and Anosov diffeomorphisms like Arnold’s cat map.

1 Concentration of measure

This section and its sequel constitute a very brief introduction to the subject, based on a Part III
course delivered by Prof. D. J. H. Garling at the University of Cambridge in 2007.

Let (X, d, µ) be a metric measure space, that is, µ is a probability measure defined on the Borel
σ-algebra generated by the open sets of a metric space (X, d). We define the concentration function
of (X, d, µ) to be

αX(ε) = sup
{
µ(Acε) | A ⊆ X Borel, µ(A) ≥ 1

2

}
. (1.1)

Here, Aε = {x ∈ X | d(x,A) ≤ ε} is the ε-neighbourhood of A in X, and Acε denotes its complement
X \Aε. We will consider two examples:

(i) the sphere Sn ⊆ Rn+1 equipped with geodesic distance d and Haar measure µ (that is, µ is the
unique isometry-invariant Borel probability measure on Sn);

(ii) the symmetric group Sn equipped with the uniform measure µ(A) = |A|
n! and Hamming distance

d(σ, τ) = 1
n |{i | σ(i) 6= τ(i)}|.

We will see that these both form normal Lévy families: there are constants c1, c2 > 0 such that, for
Xn = Sn or Xn = Sn, the concentration inequality

αXn
(ε) ≤ c1 exp(−c2nε2) (1.2)

holds for all n ∈ N. Our motivating slogan is that on high dimensional spaces Xn with concentration
(that is, when we have a concentration inequality available and n is large), Lipschitz functions defined
on Xn are approximately constant (that is, close to their medians with high probability). Let us see
why this is.

Suppose that f : X = Xn → R is 1-Lipschitz, that is,

|f(x)− f(y)| ≤ d(x, y) ∀x, y ∈ X, (1.3)

and that Mf is a median for f , that is,

µ
({
x ∈ X | f(x) ≤Mf

})
≥ 1

2
and µ

({
x ∈ X | f(x) ≥Mf

})
≥ 1

2
,

which we can write concisely as

µ(f ≤Mf ) ≥ 1

2
and µ(f ≥Mf ) ≥ 1

2
. (1.4)



Summer School/Conference “Algebra, Topology and Analysis: C∗ and A∞ Algebras” 9

Let ε > 0. Then, by (1.1), (1.3) and (1.4),

µ(f > Mf + ε) ≤ αX(ε) and µ(f < Mf − ε) ≤ αX(ε),

so by (1.2),
µ
(
|f −Mf | > ε

)
≤ 2c1 exp(−c2nε2). (1.5)

This phenomenon is indeed the reason for the definition (1.1) of the function αX .
Concentration of measure on Sn will follow from the spherical isoperimetric inequality, based on the

classical geometric problem which we formulate here as minimising the perimeter lim inf
ε→0

1
ε (µ(Aε) −

µ(A)) of a region A of given area µ(A). On the other hand, concentration on Sn will follow from
a martingale inequality, and we will see as a consequence the extreme amenability of the group of
measure-preserving automorphisms of Lebesgue space (also the unitary groups of certain operator
algebras).

2 Spherical isoperimetry

Recall that we work with geodesic distance d and Haar measure µ on the sphere Sn ⊆ Rn+1. A
spherical cap is a set of the form C = Br(n) = {x ∈ Sn | d(x, n) ≤ r}, where n = (0, . . . , 0, 1) is the
north pole.

Theorem 2.1 (Spherical isoperimetry). If A ⊆ Sn is a Borel set and C ⊆ Sn is a cap of equal
measure, then µ(Aε) ≥ µ(Cε) for every ε > 0.

Proof. Approximating by a sufficiently fine net, we may assume that A is closed. We will use the fact
that the set K of nonempty closed subsets of Sn is compact when equipped with the Hausdorff metric

ρ(X,Y ) = inf
{
r > 0 | X ⊆ Yr, Y ⊆ Xr

}
.

We denote by 〈 · , · 〉 the usual dot product on Rn+1. Given ϕ ∈ Sn with 〈ϕ, n〉 > 0, let

Eϕ =
{
x ∈ Sn | 〈ϕ, x〉 = 0

}
(the ϕ-equator),

K+
ϕ =

{
x ∈ Sn | 〈ϕ, x〉 ≥ 0

}
(northern hemisphere),

K−ϕ =
{
x ∈ Sn | 〈ϕ, x〉 < 0

}
(southern hemisphere)

and let Pϕ be reflection in Eϕ. Explicitly, Pϕ(x) = x− 2〈ϕ, x〉ϕ.
The proof is by symmetrisation: a procedure of rearranging a set by isometries (specifically,

reflections) to increase the measure of its intersection with the cap C. With this in mind, and given
ϕ as above and a closed subset A ⊆ Sn, let

Abϕ =
{
x ∈ A | Pϕ(x) ∈ A

}
,

A+
ϕ =

{
x ∈ A ∩K+

ϕ | Pϕ(x) 6∈ A
}
,

A−ϕ =
{
x ∈ A ∩K−ϕ | Pϕ(x) 6∈ A

}
,

A∗ϕ = Abϕ ∪A+
ϕ ∪ Pϕ(A−ϕ ).

2 B. JACELON

Let ε > 0. Then, by (1.1), (1.3) and (1.4),

µ(f > Mf + ε) ≤ αX(ε) and µ(f < Mf − ε) ≤ αX(ε),

so by (1.2),
µ(|f −Mf | > ε) ≤ 2c1 exp(−c2nε2). (1.5)

This phenomenon is indeed the reason for the definition (1.1) of the function αX .
Concentration of measure on Sn will follow from the spherical isoperimetric

inequality, based on the classical geometric problem which we formulate here as
minimising the perimeter lim infε→0

1
ε (µ(Aε) − µ(A)) of a region A of given area

µ(A). On the other hand, concentration on Sn will follow from a martingale in-
equality, and we will see as a consequence the extreme amenability of the group of
measure-preserving automorphisms of Lebesgue space (also the unitary groups of
certain operator algebras).

2. Spherical isoperimetry

Recall that we work with geodesic distance d and Haar measure µ on the sphere
Sn ⊆ Rn+1. A spherical cap is a set of the form C = Br(n) = {x ∈ Sn | d(x, n) ≤
r}, where n = (0, . . . , 0, 1) is the north pole.

Theorem 2.1 (Spherical isoperimetry). If A ⊆ Sn is a Borel set and C ⊆ Sn is a
cap of equal measure, then µ(Aε) ≥ µ(Cε) for every ε > 0.

Proof. Approximating by a sufficiently fine net, we may assume that A is closed.
We will use the fact that the set K of nonempty closed subsets of Sn is compact
when equipped with the Hausdorff metric

ρ(X,Y ) = inf{r > 0 | X ⊆ Yr, Y ⊆ Xr}.
We denote by 〈·, ·〉 the usual dot product on Rn+1. Given ϕ ∈ Sn with 〈ϕ, n〉 > 0,
let

Eϕ = {x ∈ Sn | 〈ϕ, x〉 = 0} (the ϕ-equator)

K+
ϕ = {x ∈ Sn | 〈ϕ, x〉 ≥ 0} (northern hemisphere)

K−ϕ = {x ∈ Sn | 〈ϕ, x〉 < 0} (southern hemisphere)

and let Pϕ be reflection in Eϕ. Explicitly, Pϕ(x) = x− 2 〈ϕ, x〉ϕ.
The proof is by symmetrisation: a procedure of rearranging a set by isometries

(specifically, reflections) to increase the measure of its intersection with the cap C.
With this in mind, and given ϕ as above and a closed subset A ⊆ Sn, let

Abϕ = {x ∈ A | Pϕ(x) ∈ A}
A+
ϕ = {x ∈ A ∩K+

ϕ | Pϕ(x) /∈ A}
A−ϕ = {x ∈ A ∩K−ϕ | Pϕ(x) /∈ A}
A∗ϕ = Abϕ ∪A+

ϕ ∪ Pϕ(A−ϕ ).
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It is straightforward to check that A∗ϕ is a closed subset such that

µ(A∗ϕ) = µ(A) and (A∗ϕ)ε ⊆ (Aε)
∗
ϕ,

so in particular,
µ((A∗ϕ)ε) ≤ µ(Aε).

It is also easy to show that

X :=
{
B ∈ K | µ(B) = µ(A) and µ(Bε) ≤ µ(Aε) ∀ ε > 0

}

is a closed subset of K such that

B ∈ X =⇒ B∗ϕ ∈ X ∀ϕ ∈ Sn with 〈ϕ, n〉 > 0.

Let Y be the smallest closed subset of K containing A that has this property, that is, B∗ϕ ∈ Y whenever
B ∈ Y and ϕ ∈ Sn with 〈ϕ, n〉 > 0. Then Y ⊆ X, so for every B ∈ Y and ε > 0, µ(B) = µ(A) and
µ(Bε) ≤ µ(Aε).

Since K is compact, so is Y , so there exists B0 ∈ Y such that µ(B ∩ C) attains its maximum on
Y at B = B0. The theorem will be proved once we have shown that C ⊆ B0.

Suppose that C 6⊆ B0. Then, there exist x ∈ Sn and ε > 0 such that Bε(x) ⊆ C \ B0. Hence,
µ(C \B0) > 0, so µ(B0 \C) > 0 too (otherwise, µ(B0) = µ(B0 ∩C) < µ(C) = µ(A) = µ(B0)). Cover
B0 \C by finitely many balls of radius ε

3 and choose one, say B ε
3
(y), such that µ(B ε

3
(y)∩B0 \C) > 0.

Note that d(x, y) ≥ 2ε
3 (otherwise, Bε(x) ∩ B0 6= dµ). Let ϕ = x−y

‖x−y‖ , so that Pϕ(y) = x and so

〈ϕ, n〉 > 0. Then, Pϕ(B ε
3
(y) ∩ B0 \ C) ⊆ C, so µ((B0)∗ϕ ∩ C) > µ(B0 ∩ C), which contradicts the

maximality of µ(B0 ∩ C).

Using integration to bound the measure of a spherical cap, we obtain the following.

Corollary 2.2. The concentration function on Sn satisfies

αSn(ε) ≤
√
π

8
exp

(
− n− 1

2
ε2
)
.

We conclude this section with some other examples of isoperimetric inequalities.

(i) A consequence of the Brunn–Minkowski inequality (see for example [1]) is that in Rn, equipped
with Euclidean distance and Lebesgue measure λ, the isoperimetric problem is solved by the
ball. Equipped instead with Gaussian measure

γn(A) = (2π)−
n
2

∫

A

exp
(
− ‖x‖

2

2

)
dλ(x),

the problem is solved by half-spaces Hs = {x ∈ Rn | xn ≤ s}, yielding the Gaussian isoperi-
metric inequality

α(Rn,γn)(ε) ≤
1

ε
√

2π
exp

(
− ε2

2

)
.

(ii) On the hypercube Qn = {0, 1}n, equipped with uniform measure and Hamming distance ‖x −
y‖1 = {i | xi 6= yi}, the problem is solved by initial segments in the reverse lexicographic order.
This is Harper’s Theorem [10]. Therefore,

αQn
(ε) ≤ exp

(
− 2

n
ε2
)
. (2.1)

To see (2.1), first note that an initial segment I of measure ≥ 1
2 must contain an element x ∈ Qn

of length l(x) := ‖x‖1 ≥ n
2 if n is even, or the largest x of length n−1

2 if n is odd (otherwise,
|I| < 2n−1 = 1

2 |Qn|). Then, since I is an initial segment, Bdn−1
2 e(0) ⊆ I. So, for any ε > 0,

Icε ⊆
{
x ∈ Qn | l(x) >

n− 1

2
+ ε
}
.
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By isoperimetry,

αQn
(ε) = µ(Icε)

≤ µ
(
l >

n− 1

2
+ ε
)

= probability of >
n− 1

2
+ ε heads when a fair coin is tossed n times

= P(sn > 2ε+ 1)

≤ P(sn ≥ 2ε),

where sn =
n∑
i=1

εi is the sum of n independent identically distributed Bernoulli random variables

with P(εi = 1) = P(εi = −1) = 1
2 . Each εi is sub-Gaussian in the sense of Kahane [11]:

E(etεi) = cosh(t) ≤ e 1
2 t

2

,

hence so is sn: by independence,

E(etsn) ≤ en
2 t

2

.

It follows from Markov’s inequality (see for example [16, Ch. 6]) with t = 2ε
n that

P(sn ≥ 2ε) ≤ e−2εtE(etsn) ≤ e− 2
n ε

2

.

3 The symmetric group

The content of this section appears in [13, Ch. 7].
Let (Ω,F , µ) be a probability space, G a sub-σ-algebra of F and f ∈ L1(Ω,F , µ). Then,

ν(A) :=

∫

A

f dµ, A ∈ G

defines a measure on G that is absolutely continuous with respect to µ. There is therefore a unique
h ∈ L1(Ω,G, µ) such that ∫

A

f dµ =

∫

A

h dµ ∀A ∈ G

(that is, h is the Radon–Nikodym derivative dν
dµ ). We call h the conditional expectation of f with

respect to G, written h = E(f | G).
The operator f 7→ E(f | G) is a positive linear map of norm one on all Lp spaces (1 ≤ p ≤ ∞)

such that:

(i) E(E(f | G) | G′) = E(f | G′) for every G′ ⊆ G;

(ii) E(g · f | G) = g · E(f | G) for every g ∈ L∞(Ω,G, µ);

(iii) E(f | G) = Ef =

∫

Ω

f dµ if G = {∅,Ω}.

A martingale with respect to a sequence of σ-algebras F1 ⊆ F2 ⊆ · · · ⊆ F is a sequence f1, f2, . . . in
∈ L1(Ω,F , µ) such that for every i, E(fi+1 | Fi) = fi.

A special case of interest to us here is when Ω is a finite set, µ is the uniform measure on Ω,
(Ωi)

k
i=1 is a sequence of partitions of Ω such that for every i, Ωi+1 refines Ωi, and Fi is defined to

be the σ-algebra generated by Ωi. In this case, the conditional expectation E(f | Fi) of a function f
on Ω is the function that is constant on atoms of Fi (that is, Fi-measurable sets of minimal positive
measure), the constant being the average of the values of f on the atom.

Using the basic properties of the conditional expectation enumerated above, together with the
inequality ex ≤ x+ ex

2

, it is not difficult to prove the following.
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Lemma 3.1. Let f ∈ L∞(Ω,F , µ) and

{∅,Ω} = F0 ⊆ F1 ⊆ · · · ⊆ Fn = F

be an increasing sequence of σ-algebras. For 1 ≤ j ≤ n, write dj = E(f | Fj)−E(f | Fj−1). Then for
every c > 0,

µ
(
|f − Ef | ≥ c

)
≤ 2 exp

(
− c2

4
∑ ‖dj‖2∞

)
.

Theorem 3.2 (Maurey [12]). The symmetric groups Sn, with uniform measure and Hamming dis-
tance, form a normal Lévy family with constants c1 = 2 and c2 = 1

64 , that is, for every ε > 0 and

every A ⊆ Sn of size ≥ n!
2 ,

µ(Acε) ≤ 2 exp
(
− n

64
ε2
)
.

Proof. Here is a sketch of the argument. For each 1 ≤ j ≤ n, let Ωj be the partition

Ωj =
{
Ai1,...,ij | 1 ≤ i1, . . . , ij ≤ n distinct

}
,

where Ai1,...,ij = {π ∈ Sn | π(1) = i1, . . . , π(j) = ij}, and let Fj = σ(Ωj), so that

{∅, Sn} = F0 ⊆ F1 ⊆ · · · ⊆ Fn = 2Sn .

The key fact about this sequence of partitions is the following. For any atom Ai1,...,ij ∈ Fj and any
two atoms B = Ai1,...,ij ,r, C = Ai1,...,ij ,s ∈ Fj+1 contained in A, there exists a bijection ϕ : B → C
such that d(b, ϕ(b)) ≤ 2

n for every b ∈ B (namely, ϕ(π) = (r s) ◦ π).

From this, one can deduce that for any 1-Lipschitz function f on Sn, the martingale fj = E(f | Fj)
satisfies ‖dj‖∞ ≤ 2

n for 1 ≤ j ≤ n. Then, by Lemma 3.1, for any such f and any c > 0,

µ
(
|f − Ef | ≥ c

)
≤ 2 exp

(
− n

16
c2
)
. (3.1)

This in particular applies to the distance f = d( · , A) from any A ⊆ Sn, and the constant c =

4( 1
n log 4)

1
2 , to give

µ
(∣∣d( · , A)− Ed( · , A)

∣∣ < 4
( 1

n
log 4

) 1
2
)
>

1

2
.

Now fix A ⊆ Sn with µ(A) ≥ 1
2 . Then µ(d( · , A) = 0) ≥ 1

2 , so there exists π ∈ Sn such that
d(π,A) = 0 and

∣∣d(π,A)− Ed( · , A)
∣∣ < 4

( 1

n
log 4

) 1
2

.

In other words, Ed( · , A) < 4( 1
n log 4)

1
2 . It then follows from (3.1) that for any c > 0,

µ
(
d( · , A) ≥ c+ 4

( 1

n
log 4

) 1
2
)
≤ 2 exp

(
− n

16
c2
)
.

For any ε > 8( 1
n log 4)

1
2 , taking c = ε

2 > 4( 1
n log 4)

1
2 then gives

µ(Acε) = µ
(
d( · , A) > ε

)
≤ 2 exp

(
− n

64
ε2
)
.

For ε ≤ 8( 1
n log 4)

1
2 ,

µ(Acε) ≤ µ(Ac) ≤ 1

2
≤ 2 exp

(
− n

64
ε2
)
,

so the inequality holds for all ε > 0.
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4 Extreme amenability

A topological group G is amenable if every continuous affine action of G on a nonempty compact
convex set has a fixed point, or equivalently if there is a left-invariant mean on the space Cbr(G) of
bounded right uniformly continuous functions on G.

Here, ‘right uniformly continuous’ means uniformly continuous with respect to the right uniformity
on G, that is, the coarsest uniformity on G compatible with its underlying topology such that each
right-multiplication map g 7→ gh is uniformly continuous. A left-invariant mean is a function m :
Cbr(G)→ C that is positive, linear, unital and invariant under the left action of G on Cbr(G), that is,
m(gf) = m(f) for every f ∈ Cbr(G) and g ∈ G, where gf(x) = f(g−1x).

If G is locally compact, amenability is also equivalent to the existence of an invariant mean on the
larger C∗-algebra L∞(G) of measurable functions G → C that are essentially bounded with respect
to Haar measure. There are many, many more equivalent conditions; an excellent reference is [14].

Examples of amenable groups include compact groups, abelian groups, and the unitary groups
of injective von Neumann algebras equipped with the ultraweak topology (see [6]), but not groups
containing the free group F2 as a closed subgroup (which admit paradoxical decompositions, as in the
Banach–Tarski paradox).

Relaxing the ‘affine’ constraint leads to a much stronger notion of amenability: G is extremely
amenable if every continuous action of G on a nonempty compact space has a fixed point, or equiva-
lently if Cbr(G) has a multiplicative invariant mean.

Extremely amenable groups must be large.

Theorem 4.1 (Veech [15]). Any locally compact group admits a free action on some compact space,
so is not extremely amenable.

On the other hand, Gromov and Milman used concentration of measure to prove the following.

Theorem 4.2 (Gromov–Milman [8]). The unitary group of infinite-dimensional Hilbert space is ex-
tremely amenable under the strong operator topology.

Here, the strong operator topology (SOT) on the space of bounded linear operators on the Hilbert
space H is defined by Tj → T iff ‖Tjx − Tx‖ → 0 for every x ∈ H. On the space U(H) of uni-
tary operators on H, this coincides with the weak operator topology (WOT), defined by Tj → T iff
〈Tjx, Tjy〉 → 〈Tx, Ty〉 for every x, y ∈ H.

To illustrate the idea, let us examine the proof of the following related result of Giordano and
Pestov.

Theorem 4.3 (Giordano–Pestov [7]). The group Aut (X, µ)w of all measure-preserving automor-
phisms of a standard nonatomic (σ-) finite measure space is extremely amenable under the weak
topology.

In the finite case, we may assume up to isomorphism that (X,µ) is [0, 1] with Lebesgue measure λ.
Aut (X, µ) is then the group of (equivalence classes of, that is, up to sets of measure zero) invertible
maps T : [0, 1]→ [0, 1] such that λ(T−1E) = λ(E) for all measurable E.

Each such T induces a unitary operator

UT : L2([0, 1], λ)→ L2([0, 1], λ), f 7→ f ◦ T.

The weak topology on Aut ([0, 1], λ) is the restriction of the strong (equivalently, weak) operator
topology on the image of the map T 7→ UT . Equivalently, Tj → T iff λ(TjE 4 TE) → 0 for every
measurable set E.

The uniform topology on Aut ([0, 1], λ) is induced by the left-invariant metric

d(σ, τ) = λ
({
x ∈ [0, 1] | σ(x) 6= τ(x)

})

and is strictly finer than the weak topology.
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For each n ∈ N, the symmetric group S2n embeds into Aut ([0, 1], λ) via interval exchange trans-
formations of the dyadic intervals

(k − 1

2n
,
k

2n

)
, 1 ≤ k ≤ 2n.

Under these embeddings, the uniform metric restricts to Hamming distance.

CONCENTRATION OF MEASURE 7

The uniform topology on Aut([0, 1], λ) is induced by the left-invariant metric

d(σ, τ) = λ({x ∈ [0, 1] | σ(x) 6= τ(x)})
and is strictly finer than the weak topology.

For each n ∈ N, the symmetric group S2n embeds into Aut([0, 1], λ) via interval
exchange transformations of the dyadic intervals

(
k−1
2n , k2n

)
, 1 ≤ k ≤ 2n. Under

these embeddings, the uniform metric restricts to Hamming distance.

The proof of the following can be found in [9].

Theorem 4.4 (Weak Approximation Theorem). The increasing union
⋃
n∈N S2n

is weakly dense in Aut([0, 1], λ).

To prove Theorem 4.3, it therefore suffices to prove that G =
⋃
n∈N S2n is ex-

tremely amenable.
Denote Haar measure on S2n by µn. The space Cbr(G) is a commutative unital

C∗-algebra (whose spectrum is the Samuel compactification of G), so its state space
is weak∗-compact. We may therefore assume that the states

ϕn : Cbr(G)→ C, ϕn(f) =

∫

G

f dµn

converge weak∗ to a state ϕ. We will show that ϕ is multiplicative and G-invariant.
For every f ∈ Cbr(G) and n ∈ N, let Mn(f) be a µn-median of f (as in §1) and

let Lf > 0 be such that f varies by at most ε on entourages of width at most Lfε.
Then, by Theorem 3.2 and the same argument that we used to obtain (1.5),

µ(|f −Mn(f)| > ε) ≤ 2 exp

(
−2n

64
L2
fε

2

)
∀ ε > 0.

This implies that ∫

G

|f −Mn(f)| dµn → 0 ∀ f ∈ Cbr(G)

and therefore, for every f, g ∈ Cbr(G),
∣∣∣∣
∫
fg −

∫
f

∫
g

∣∣∣∣ ≤
∫
|f −Mn(f)||g|+ |Mn(f)|

∫
|g −Mn(g)|

+ |Mn(g)|
∫
|Mn(f)− f |+

∫
|f |
∫
|Mn(g)− g|

→ 0 as n→∞
(where each integral is with respect to µn), so ϕ(fg) = ϕ(f)ϕ(g).

Left invariance holds because each µn is invariant: given f ∈ Cbr(G) and g ∈
S2m ⊆ ⋃n≥m S2n ,

ϕ(gf) = lim
n→∞

∫
gf dµn = lim

n→∞

∫
f dµn = ϕ(f).

This completes the proof.

The proof of the following can be found in [9].

Theorem 4.4 (Weak Approximation Theorem). The increasing union
⋃
n∈N

S2n is weakly dense in

Aut ([0, 1], λ).

To prove Theorem 4.3, it therefore suffices to prove that G =
⋃
n∈N

S2n is extremely amenable.

Denote Haar measure on S2n by µn. The space Cbr(G) is a commutative unital C∗-algebra (whose
spectrum is the Samuel compactification of G), so its state space is weak∗-compact. We may therefore
assume that the states

ϕn : Cbr(G)→ C, ϕn(f) =

∫

G

f dµn

converge weak∗ to a state ϕ. We will show that ϕ is multiplicative and G-invariant.
For every f ∈ Cbr(G) and n ∈ N, let Mn(f) be a µn-median of f (as in § 1) and let Lf > 0 be such

that f varies by at most ε on entourages of width at most Lfε. Then, by Theorem 3.2 and the same
argument that we used to obtain (1.5),

µ
(
|f −Mn(f)| > ε

)
≤ 2 exp

(
− 2n

64
L2
fε

2
)
∀ ε > 0.

This implies that ∫

G

|f −Mn(f)| dµn → 0 ∀ f ∈ Cbr(G)

and therefore, for every f, g ∈ Cbr(G),
∣∣∣∣
∫
fg −

∫
f

∫
g

∣∣∣∣ ≤
∫
|f −Mn(f)| |g|+ |Mn(f)|

∫
|g −Mn(g)|

+ |Mn(g)|
∫
|Mn(f)− f |+

∫
|f |
∫
|Mn(g)− g|

→ 0 as n→∞

(where each integral is with respect to µn), so ϕ(fg) = ϕ(f)ϕ(g).
Left invariance holds because each µn is invariant: given f ∈ Cbr(G) and g ∈ S2m ⊆ ⋃

n≥m
S2n ,

ϕ(gf) = lim
n→∞

∫
gf dµn = lim

n→∞

∫
f dµn = ϕ(f).

This completes the proof.
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Remark 4.5.

(i) (Gromov–Milman) More generally, if G is a Lévy group, that is, G =
⋃
i∈I

Ki, where the Ki are

subgroups of G whose Haar measures concentrate with respect to the right uniformity, then G
is extremely amenable.

(ii) (Giordano–Pestov) With the uniform topology, Aut ([0, 1], λ) is not amenable.

5 Anosov diffeomorphisms

By a dynamical system, we will mean a probability measure preserving transformation f : X → X
of a probability space (X,Σ, µ). Measurements of the system are made via observables: functions ϕ
from the state space X to, say, R that may be required to be, for example, measurable or continuous
or Lipschitz.

Given an observable ϕ, its spatial average is
∫
X

ϕdµ, and its finite time average over n−1 iterations

of the system, with initial state x ∈ X, is

Anϕ(x) =
1

n

(
ϕ(x) + ϕ(fx) + · · ·+ ϕ(fn−1x)

)
.

If µ is ergodic with respect to f , that is,

E ∈ Σ, µ(f−1E4E) = 0 =⇒ µ(E) = 0 or µ(E) = 1

(or equivalently, if every f -invariant (up to measure zero) measurable function X → R is almost
surely constant), and ϕ is a measurable observable, then by Birkhoff’s Ergodic Theorem (see [2,
Theorem 4.5.5]),

lim
n→∞

Anϕ(x) =

∫

X

ϕdµ almost surely.

In this sense, the finite time averages can be thought of as statistical estimators of the spatial average.

Remark 5.1.

(i) If X is compact, then there exists G ∈ Σ of full measure such that for every continuous ϕ and
x ∈ G, lim

n→∞
Anϕ(x) =

∫
X

ϕdµ. In other words, there is a common set of generic points for all

continuous observables.

(ii) If µ is not ergodic, then the finite time averages converge to the conditional expectation of ϕ
with respect to the σ-algebra of f -invariant sets.

Question 5.2. How fast do the finite time averages converge to the spatial average?

Not much can be said without imposing some regularity on f , as outlined for example below.
Otherwise, convergence for x ∈ G can be arbitrarily slow.

Definition 5.3. Let M be a compact Riemannian manifold. A diffeomorphism f : M → M , whose
derivative we denote by Df , is called an Anosov diffeomorphism if the tangent space splits into Df -
invariant sub-bundles, TM = Es ⊕ Eu, such that Df is uniformly expanding on Eu and uniformly
contracting on Es.

This means the following:

(i) for every x ∈M ,

(Df)x(Es(x)) = Es(f(x)) and (Df)x(Eu(x)) = Eu(f(x));
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(ii) there are constants C > 0 and 0 < λ < 1 such that, for every x ∈M and n ≥ 0,

‖D(fn)xξ‖ ≤ Cλn‖ξ‖ ∀ ξ ∈ Es(x),

‖D(f−n)xη‖ ≤ Cλ−n‖η‖ ∀ η ∈ Eu(x).

Here, D(fn)x denotes the derivative of

n︷ ︸︸ ︷
f ◦ · · · ◦ f at x.

Given an Anosov diffeomorphism f : M →M and x ∈M , the set

W s(x) :=
{
y ∈M | lim

n→∞
d(fnx, fny) = 0

}

(the convergence being necessarily exponentially fast) is an immersed submanifold of M , called the
stable manifold at x. The stable subspace Es(x) is tangent at x to W s(x). The unstable manifold
Wu(x) is defined similarly.

Example 5.4 (Arnold’s cat map). Let M be the torus R2/Z2 and define

f : M →M, f

(
x
y

)
=

(
2 1
1 1

)(
x
y

)
mod 1.

This is an example of a hyperbolic toral automorphism. The matrix A =

(
2 1
1 1

)
has eigenvalues

λ = 1
2 (3 +

√
5) > 1 and 1

λ < 1. At v =

(
x
y

)
, the derivative (Df)v has matrix A; it expands by a

factor of λ along the λ-eigenvector vu =

(
1
2 (1 +

√
5)

1

)
and contracts by λ along the orthogonal 1

λ -

eigenvector vs =

(
1
2 (1−

√
5)

1

)
(note the irrational slopes). The unstable subspace Eu(v) is tangent

to the geodesic at v that is parallel to vu, so Wu(v) winds densely over the torus, as does W s(v).
The reason that f is called ‘Arnold’s cat map’ (after Vladimir Arnold) is that points with rational

coordinates have periodic orbits, so a picture of a cat, though for a time distorted, will eventually
return to normal after finitely many iterations.

The following two results appear in [2] as Theorem 5.10.3 and Theorem 6.3.1.

Theorem 5.5. The following are equivalent for an Anosov map f : M →M :

(i) every x ∈M is non-wandering: for every open set U ⊆M containing x, there exists n ∈ N such
that fnU ∩ U 6= ∅;

(ii) f is irreducible: for every nonempty open sets U, V ⊆ sM , there exists n∈N such that fnU ∩
V 6= ∅;

(iii) f is mixing: for every nonempty open sets U, V ⊆ M , there exists n ∈ N such that for every
m ≥ n, fmU ∩ V 6= ∅;

(iv) every stable manifold W s(x) is dense in M ;

(v) every unstable manifold Wu(x) is dense in M .

This in particular implies that the set of periodic points of an irreducible Anosov system are dense,
and that such a system is an example of a Smale space.

Theorem 5.6 (Anosov). A C2 Anosov diffeomorphism that preserves a smooth measure µ(A) =∫
A

q(x) dm(x) (where q : M → R is continuous and m is the Riemannian volume form on M) is

ergodic.
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In the situation of Theorem 5.6, recall that Birkhoff’s Ergodic Theorem tells us that, with µ the
volume measure, the set

{
x ∈M | lim

n→∞
Anϕ(x) =

∫

M

ϕdµ for every continuous ϕ

}

has full volume. Even if f does not preserve volume in the sense of Theorem 5.6, as long as f
is irreducible and C2, there exists a unique f -invariant measure µ, called the Sinai–Ruelle–Bowen
(SRB) measure of f , for which this still holds (see [18]).

The following concentration of measure inequality for the SRB measure of such an Anosov system
(or more generally, a system modelled by a Young tower with exponential tails, as in [17]) was proved
using martingale techniques (see [4, 5]).

Theorem 5.7. There is a constant C > 0 such that for every n ∈ N and every function
K(x0, x1, . . . , xn−1) that is 1-Lipschitz in each coordinate,

∫

M

exp

(
K(x, fx, . . . , fn−1x)−

∫

M

K(y, fy, . . . , fn−1y) dµ(y)

)
dµ(x) ≤ exp(Cn).

Corollary 5.8. For every ε > 0 and every 1-Lipschitz observable ϕ,

µ

({
x ∈M |

∣∣∣∣Anϕ(x)−
∫

M

ϕdµ

∣∣∣∣ > ε

})
≤ 2 exp

(
− n

4C
ε2
)
.

Proof. Take K(x0, . . . , xn−1) = ϕ(x0) + · · · + ϕ(xn−1) and use the Chernoff bounding trick, that is,
an application of Markov’s inequality similar to our use in § 2 in the context of sub-Gaussian random
variables. See [3, § 5] for a fuller exposition.

This allows to conclude with an answer to Question 5.2: for C2 Anosov systems, the finite time
averages of a Lipschitz observable converge in SRB measure to its spatial average exponentially fast.
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A∞-Algebra Structure in Cohomology and its Applications

Tornike Kadeishvili

The main method of algebraic topology is to assign to a topological a space certain algebraic object
(model) and to study this relatively simple algebraic object instead of complex geometric one.

Examples of such models are chain and cochain complexes, homology and homotopy groups, co-
homology algebras, etc.

The main problem here is to find models that classify spaces up to some equivalence relation, such
as homeomorphism, homotopy equivalence, rational homotopy equivalence, etc.

Usually such models are not complete: the equivalence of models does not guarantee the equivalence
of spaces. They can just distinguish spaces.

The models which carry richer algebraic structure contain more information about the space. For
example the model “cohomology algebra” allows to distinguish spaces which cannot be distinguished
by the model “cohomology groups”.

Here we are going to present one more additional algebraic structure on cohomology, which was
constructed in [15, 16], namely, we show that on cohomology H∗(X,R) there exists Stasheff’s A∞-
algebra structure. This structure consists of a collection of operations{

mi : H∗(X,R)⊗ · · · (i times) · · · ⊗H∗(X,R)→ H∗(X,R), i = 2, 3, . . .
}
.

In fact this structure extends the usual structure of the cohomology algebra: the first operation
m2 : H∗(X,R)⊗H∗(X,R)→ H∗(X,R) coincides with the cohomology multiplication.

Stasheff’s A∞ algebra is a sort of Strong Homotopy Associative Algebra, the operation m3 is
a homotopy which measures the nonassociativity of the product m2. So the existence of a strictly
associative cohomology algebra H∗(X,R) looks a bit strange, but although the product on H∗(X,R)
is associative, there appears a structure of a (generally nondegenerate) minimal A∞-algebra, which
can be considered as an A∞ deformation of the classical cohomology (H∗(X,R), µ∗), [25].

The cohomology algebra equipped with this additional structure(
H∗(X,R),

{
mi : H∗(X,R)⊗i → H∗(X,R), i = 2, 3, . . .

}
, m1 = 0, m2 = µ∗

)
,

which we call cohomology A∞-algebra, carries more information about the space than the cohomology
algebra. For example just the cohomology algebra H∗(X,R) does not determine the cohomology of
the loop space H∗(ΩX,R), but the cohomology A∞-algebra (H∗(X,R), {mi}) does. Dually, the
Pontriagin ring H∗(G) does not determine the homology H∗(BG) of the classifying space, but the
homology A∞-algebra (H∗(G), {mi}) does.

These A∞-algebras have several applications in the cohomology theory of fibre bundles too, see [16].
But this invariant also is not complete. One cannot expect the existence of a more or less simple

complete algebraic invariant in general, but for the rational homotopy category there are various
complete homotopy invariants (algebraic models):

(i) The model of Quillen LX , which is a differential graded Lie algebra;

(ii) The minimal model of Sullivan MX , which is a commutative graded differential algebra;

(iii) The filtered model of Halperin and Stasheff ΛX, which is a filtered commutative graded differ-
ential algebra.

The rational cohomology algebra H∗(X,Q) is not a complete invariant even for rational spaces:
two spaces might have isomorphic cohomology algebras, but different rational homotopy types.

Here we also present the main result of [20]. There is the notion of C∞-algebra which is the com-
mutative version of Stasheff’s notion of A∞-algebra, and in [20] we have shown that in the rational
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case on cohomology H∗(X,Q) arises a structure of C∞-algebra (H∗(X,Q), {mi}). The main applica-
tion of this structure is the following: it completely determines the rational homotopy type, that is,
1-connected spaces X and X ′ have the same rational homotopy type if and only if their cohomology
C∞-algebras (H∗(X,Q), {mi}) and (H∗(X ′, Q), {m′i}) are isomorphic.

We present also several applications of this complete rational homotopy invariant to some problems
of rational homotopy theory.

The C∞-algebra structure in cohomology and the applications of this structure in rational homo-
topy theory were already presented in the hardly available small book [22] (see also the preprint [21]).

Applications of cohomology C∞-algebra in rational homotopy theory are inspired by the existence
of Sullivan’s commutative cochains A(X) in this case. The cohomology C∞-algebra (H∗(X,Q), {mi})
carries the same amount of information as A(X) does. Actually these two objects are equivalent in
the category of C∞-algebras.

We want to remark that for simplicity in these lectures signs are ignored. Of course they can be
reconstructed using the koszul sign rule.

The organization is as follows.
In Section 1 the notions of chain and cochain complexes are presented. In Section 2 the differential

algebras and coalgebras are defined. In Section 3 the bar and cobar constructions are introduced.
Twisting cochains and Berikashvili’s functor D are presented in Section 4. In Section 5 the Stasheff’s
A∞-algebras are discussed. Hochschild cochains which are used for description of A∞-algebras are
presented in Section 6. Section 7 is dedicated to our central topic, the Minimality Theorem. In the
next Section 8 its applications are given. And the last Section 9 is dedicated to applications of the
cohomology C∞ algebra in rational homotopy theory.

1 Differential graded modules

1.1 Chain and cochain complexes

1.1.1 Graded modules

We work over a commutative associative ring with unit R.
A graded module is a collection of R-modules

M∗ =
{
. . . ,M−1,M0,M1, . . . ,Mn,Mn+1, . . .

}
.

A morphism of graded modules M∗ →M ′∗ is a collection of homomorphisms {fi : Mi →M ′i , i ∈ Z}.
Sometimes we use the following notion: a morphism of graded modules of degree n is a collection

of homomorphisms {fi : Mi →M ′i+n, i ∈ Z}. So a morphism of graded modules has the degree 0.

1.1.2 Chain complexes

Definition 1.1. A differential graded (dg) module (or a chain complex) is a sequence of R modules
and homomorphisms

· · · C−1

d−1oo C0
d0oo C1

d1oo · · ·d2oo Cn−1

dn−1oo Cn
dnoo Cn+1

dn+1oo · · ·
dn+2oo

such that didi+1 = 0.

Elements of Cn are called n-dimensional chains; the homomorphisms di are called boundary oper-
ators, or differentials; elements of Zn = Ker dn ⊂ Cn are called n-dimensional cycles and elements of
Bn = Im dn+1 ⊂ Cn are called n-dimensional boundaries.

It follows from the condition didi+1 = 0 that Bn ⊂ Zn.

Definition 1.2. The n-th homology module Hn(C∗) of a dg module (C∗, d∗) is defined as the quotient
Zn/Bn.

A sequence Cn−1 Cn
dnoo Cn+1

dn+1oo is exact, that is, Bn = Zn, iff Hn(C∗) = 0. Thus homology

measures the deviation from exactness.
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1.1.3 Cochain complexes

The notion of cochain complex differs from the notion of chain complex by the direction of the
differential

· · · d−1
// C−1 d0 // C0 d1 // C1 d2 // · · · dn−1

// Cn−1 dn // Cn
dn+1
// Cn+1 dn+2

// · · · .

Corresponding terms here are cochains, cocycles Zn = Ker dn+1 ⊂ Cn, coboundaries Bn = Im dn ⊂
Cn, cohomology Hn(C∗) = Zn/Bn.

Changing indices Cn = C−n, dn = d−n we convert a chain complex (C∗, d∗) to a cochain complex
(C∗, d∗).

1.1.4 Dual cochain complex

For a chain complex (C∗, d∗) and an R-module A the dual cochain complex C∗ = (Hom(C∗, A), δ∗) is
defined as

Cn = (Hom(Cn, A), δ∗), δ∗(φ) = φd.

1.1.5 Chain maps

Definition 1.3. A chain map of chain complexes f : (C∗, d∗) → (C ′∗, d
′
∗) is defined as a sequence of

homomorphisms {fi : Ci → C ′i} such that d′nfn = fn−1dn.

This condition means the commutativity of the diagram

· · · Cn−1

dn−1oo

fn−1

��

Cn
dnoo

fn

��

Cn+1

dn+1oo

fn+1

��

· · ·
dn+2oo

· · · C ′n−1
d′n−1

oo C ′n
d′n

oo C ′n+1
d′n+1

oo · · ·
d′n+2

oo

.

Proposition 1.1. The composition of chain maps is a chain map.

Chain complexes and chain maps form a category, which we denote by DGMod.

Proposition 1.2. If {fi} : (C∗, d∗) → (C ′∗, d
′
∗) is a chain map, then fn sends cycles to cycles and

boundaries to boundaries, i.e.,

fn(Zn) ⊂ Z ′n and fn(Bn) ⊂ B′n.

Proposition 1.3. A chain map {fi} : (C∗, d∗)→ (C ′∗, d
′
∗) induces the well defined homomorphism of

homology groups

f∗n : Hn(C∗)→ Hn(C ′∗).

Homology is a functor from the category of dg modules to the category of graded modules

H : DGMod→ GMod.

1.1.6 Hom complex

For two chain complexes C, C ′ define the chain complex (Hom(C,C ′), D) as

Hom(C,C ′)n = Homn(C,C ′)

where Homm(C,C ′) = {φ : C∗ → C ′∗+n, } is the module of homomorphisms of degree n, and the

differential D : Homn(C,C ′)→ Homn−1(C,C ′) is given by D(φ) = d′φ+ (−1)deg φφd.
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1.1.7 Tensor product

For two chain complexes A and B the tensor product A⊗B is defined as the following chain complex:

(A⊗B)n =
∑

p+q=n

Ap ⊗Bq,

with differential d⊗ : (A⊗B)n → (A⊗B)n−1 given by

d⊗(ap ⊗ bq) = dp(ap)⊗ bq + (−1)pap ⊗ d′q(bq).

If f : A→ A′ and g : B → B′ are chain maps then there is a chain map

f ⊗ g : A⊗B → A′ ⊗B′

defined as (f ⊗ g)(a⊗ b) = f(a)⊗ g(b).

1.1.8 Chain homotopy

Definition 1.4. Two chain maps {fi}, {gi} : (C∗, d∗)→ (C ′∗, d
′
∗) are called chain homotopic, if there

exists a sequence of homomorphisms Dn : Cn → C ′n+1,

· · · Cn−1

dn−1oo

fn−1

��

gn−1

��

Dn−1

!!

Cn
dnoo

fn

��

gn

��

Dn

!!

Cn+1

dn+1oo

fn+1

��

gn+1

��

· · ·
dn+2oo

· · · C ′n−1
d′n−1

oo C ′n
d′n

oo C ′n+1
d′n+1

oo · · ·
d′n+2

oo

.

such that fn − gn = d′n+1Dn +Dn−1dn. In this case we write f ∼D g.

Proposition 1.4. Chain homotopy is an equivalence relation:

(a) f ∼0 f ;

(b) f ∼D g =⇒ g ∼−D f ;

(c) f ∼D g, g ∼D′ h =⇒ f ∼D+D′ h.

Proposition 1.5. Chain homotopy is compatible with compositions:

(a) f ∼D g =⇒ hf ∼hD hg;

(b) f ∼D g =⇒ fk ∼Dk gk.

Thus there is a category hoDGMod whose objects are chain complexes and morphisms are chain
homotopy classes

HomhoDGMod(C,C
′) = [C,C ′] = HomDGMod(C,C

′)/ ∼ .

Proposition 1.6. If two chain maps {fi}, {gi} : (C∗, d∗) → (C ′∗, d
′
∗) are chain homotopic, then the

induced homomorphisms of homology groups coincide:

f∗n = g∗n : Hn(C∗)→ Hn(C ′∗).

Thus we have the commutative diagram of functors

DGMod //

H &&

hoDGMod

Hxx
GMod

.
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1.1.9 Chain equivalence

Chain complexes C and C ′ are called chain equivalent C ∼ C ′, if there exist chain maps

f : C // C ′ : goo

such that gf ∼ idC , fg ∼ idC′ . This means that C and C ′ are isomorphic in hoDGMod.

A chain complex C is called contractible if C ∼ 0, equivalently if idC ∼ 0 : C → C.

Proposition 1.7. Each contractible C is acyclic, i.e., Hi(C) = 0 for all i.

Proposition 1.8. If all Ci are free and C is acyclic, then C is contractible.

1.2 Algebraic and topological examples

1.2.1 Algebraic example

Let (A,µ : A⊗A→ A) be an associative algebra, then

C(A) =
(
A A⊗A

µoo A⊗A⊗A
µ⊗id−id⊗µoo · · ·

µ⊗id⊗id−id⊗µ⊗id+id⊗id⊗µoo
)

is a chain complex: the associativity condition guarantees that dd = 0.

If A has a unit e ∈ A then this complex is contractible, that is id : C(A)→ C(A) and 0 : C(A)→
C(A) are homotopic: the suitable chain homotopy is given by D(a1 ⊗ · · · ⊗ an) = (e⊗ a1 ⊗ · · · ⊗ an).
This immediately implies that C(A) is acyclic, that is Hi(C(A)) = 0 for all i > 0.

This example is a particular case of more general chain complex called the bar construction, see
later.

1.2.2 Simplicial complexes

Simplicial complex is a formal construction, which models topological spaces.

Definition 1.5. A simplicial complex is a set V with a given family of finite subsets, called simplices,
so that the following conditions are satisfied:

(1) all points (called vertices) of V are simplices;

(2) any nonempty subset of a simplex is a simplex.

A simplex consisting of (n+1) points is called n-dimensional simplex. The 0-dimensional simplexes,
i.e., the points of V are called vertices.

Definition 1.6. A simplicial map of simplicial complexes V → V ′ is a map of vertices f : V → V ′

such that the image of any simplex of V is a simplex in V ′.

Proposition 1.9. The composition of simplicial maps is a simplicial map.

Simplicial complexes and simplicial maps form a category which we denote as SC.

Proposition 1.10. To any simplicial set V corresponds a topological space |V | (called its realization)
and to any simplicial map f : V → V ′ corresponds a continuous map of realizations |f | : |V | → |V ′|.

So the realization is a functor from the category of simplicial complexes to the category of topo-
logical spaces

| − | : SC → Top.
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1.2.3 Homology modules of a simplicial complex

In this section we consider ordered simplicial complexes: we assume that the set of vertices V is
ordered by a certain order.

We assign to such an ordered simplicial complex the following chain complex (C∗(V ), d∗): Let
Cn(V ) be the free R-module, generated by all ordered n-simplices σn = (vk0 , vk1 , . . . , vkn), where
vk0 < vk1 < · · · < vkn ; the differential dn : Cn(V )→ Cn−1(V ) on a generator σn = (vk0 , vk1 , . . . , vkn) ∈
Cn(V ) is given by

dn(vk0 , vk1 , . . . , vkn) =

n∑
i=0

(−1)i(vk0 , . . . , v̂ki , . . . , vkn),

where (vk0 , . . . , v̂ki , . . . , vkn) is the (n − 1)-simplex obtained by omitting vki , and is extended on the
whole Cn(V ) linearly.

Proposition 1.11. The composition dn−1dn is zero, thus (C∗(V ), d∗) is a chain complex.

Definition 1.7. The n-th homology group Hn(V ) of an ordered simplicial set V is defined as the n-th
homology group Hn(C∗(V )).

1.2.4 Cohomology modules of a simplicial complex

Let A be an R-module. The cochain complex of V with coefficients in A is defined as the dual
to the chain complex C∗(V ): C∗(V,A) = Hom(C∗(V ), A). The n-th cohomology module of V with
coefficients in A is just the n-th homology of this cochain complex.

Below we show that the cohomology H∗(V,A) is more interesting than the homology H∗(V ), since
cohomology possesses richer algebraic structure: it is a ring.

2 Differential graded algebras and coalgebras

2.1 Differential graded algebras

2.1.1 Graded algebras

A graded algebra is a graded module

A∗ =
{
. . . , A−1, A0, A1, . . . , An, An+1, . . .

}
equipped with an associative multiplication µ : A∗ ⊗A∗ → A∗ of degree 0, i.e., µ(µ⊗ id) = µ(id⊗ µ)
and µ : Ap ⊗Aq → Ap+q. We denote a · b = µ(a⊗ b).

For a graded algebra A∗ the component A0 is an associative algebra.

A morphism of graded algebras f : (A,µ)→ (A′, µ′) is a morphism of graded modules {fk : Ak →
A′k} which is multiplicative, that is, fµ = µ(f ⊗ f), i.e., f(a · b) = f(a) · f(b).

Let f, g : (A,µ) → (A′, µ′) be two morphisms of graded algebras. An (f, g)-derivation of degree
k is defined as a morphism of graded modules of degree k D : A∗ → A′∗+k, i.e., a collection of
homomorphisms {Di : Ai → A′i+k, i ∈ Z} which satisfies the condition

D(a · b) = D(a) · g(b) + (−1)k·|a|f(a) ·D(b).

An essential particular case of this notion is a k-derivation D : (A,µ)→ (A,µ) which is an (id, id)
k-derivation, i.e., it satisfies the condition D(a · b) = D(a) · b+ a ·D(b).

It is easy to see that if D,D′ : A∗ → A′∗+k are two (f, g) derivation, then their sum D+D′ is also
an (f, g) derivation.

Moreover, for graded algebra morphisms h : B → A, l : A′ → C and an (f, g) derivations
D : A→ A′ the composition Dh is an (fh, gh) derivation and lD is an (lf, lg)-derivation.
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2.1.2 Differential graded algebras

Definition 2.1. A differential graded algebra (dga in short) (A, d, µ) is a dg module (A, d) equipped
additionally with a multiplication

µ : A⊗A→ A

so that (A,µ) is a graded algebra, and the multiplication µ is a chain map, that is, the differential d
and µ are connected by the condition

d(a · b) = da · b+ (−1)|a|a · db.

This condition means simultaneously that µ is a chain map, and that d is an (id, id)-derivation of
degree −1.

A morphism of dga-s f : (A, d, µ)→ (A, d, µ) is defined as a multiplicative chain map:

df = fd, f(a · b) = f(a) · f(b).

We denote the obtained category as DGAlg.
For a dg algebra (A, d, µ) its homology H∗(A) is a graded algebra with the following multiplication:

H∗(A)⊗H∗(A)
φ // H∗(A⊗A)

H∗(µ) // H∗(A) ,

where φ : H∗(A)⊗H∗(A)→ H∗(A⊗A) is the standard map

φ(h1 ⊗ h2) = cl(zh1
⊗ zh2

).

In other words the multiplication on H(A) is defined as follows: For h1, h2 ∈ H(A) the product
h1 · h2 is the homology class of the cycle zh1

· zh2
.

Furthermore, a dga map induces a multiplicative map of homology graded algebras.
Thus homology is a functor from the category of dg algebras to the category of graded algebras.

2.1.3 Derivation homotopy

Two dg algebra maps f, g : A→ A′ are called homotopic if there exists a chain homotopy D : A→ A′,
f − g = dD +Dd which, in addition is a (f, g)-derivation, that is

D(a · b) = D(a) · g(b) + (−1)|a|f(a) ·D(b).

Note that generally this is not an equivalence relation.

2.2 Differential graded colgebras

2.2.1 Graded coalgebras

A graded coalgebra (C,∆) is a graded module

C =
{
. . . , C−1, C0, C1, . . . , Cn, Cn+1, . . .

}
equipped with a comultiplication

∆ : C ⊗ C → C

which is coassociative, that is (∆⊗ id)∆ = (id⊗∆)∆, i.e., the following diagram commutes:

C
∆ //

∆

��

C ⊗ C

∆⊗id
��

C ⊗ C
id⊗∆

// C ⊗ C ⊗ C

.
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A morphism of graded coalgebras f : (C,∆) → (C ′,∆′) is a morphism of graded modules {fk :
Ck → C ′k} which is comultiplicative, that is ∆′f = (f ⊗ f)∆, i.e., the following diagram commutes:

C
f //

∆

��

C ′

∆′

��
C ⊗ C

f⊗f
// C ′ ⊗ C ′

.

If f, g : C → C ′ are two morphisms of graded coalgebras, then an (f, g)-coderivation of degree k
is defined as a collection of homomorphisms {Di : Ci → Ci+k} which satisfies the condition ∆′D =
(f ⊗D +D ⊗ g)∆, i.e., the following diagram commutes:

C
D //

∆

��

C ′

∆′

��
C ⊗ C

f⊗D+D⊗g
// C ′ ⊗ C ′

.

An essential particular case of this notion is that of a k-coderivation D : (C,∆) → (C,∆), which
is an (id, id)- k-coderivation, i.e., it satisfies the condition ∆D = (id⊗D +D ⊗ id)∆.

It is easy to see that if D,D′ : C∗ → C ′∗+k are two (f, g)-coderivations, then their sum D +D′ is
also an (f, g)-coderivation.

Moreover, for graded coalgebra morphisms h : A → C, l : C ′ → B and an (f, g)-coderivation
D : C → C ′ the composition Dh is an (fh, gh)-coderivation and lD is an (lf, lg) coderivation.

2.2.2 Differential graded coalgebras

Definition 2.2. A differential graded coalgebra (dgc in short) (C, d,∆) is a dg module (C, d) equipped
additionally with a comultiplication ∆ : C → C ⊗ C so that (C,∆) is a graded coalgebra and the
comultiplication ∆ and the differential d are related by the condition

∆d = (d⊗ id+ id⊗ d)∆.

This condition means simultaneously that ∆ is a chain map, and that d is a (id, id)-coderivation of
degree −1.

A morphism of dgc-s f : (C, d,∆) → (C ′, d′,∆′) is defined as a morphism of graded coalgebras
which is a chain map.

We denote the obtained category as DGCoalg.

Generally for a dg coalgebra (C, d, µ) its homology H∗(C) is not a graded coalgebra:

H∗(C)⊗H∗(C)
φ // H∗(C ⊗ C) H∗(C)

H(∆)oo ,

the map φ : H∗(C) ⊗H∗(C) → H∗(C ⊗ C) has the wrong direction, but if all Hi(C) are free then φ
is invertible and H∗(C) is a graded coalgebra.

2.2.3 Coderivation homotopy

In the category of dg coalgebras there is the following notion of homotopy: two dg coalgebra maps
f, g : (C, dC ,∆C) → (C ′, dC′ ,∆C′) are homotopic, if there exists D : C → C ′ of degree +1 such that
dC′D+DdC = f−g, i.e., the chain maps f and g are chain homotopic, and additionally the homotopy
D is a f − g-coderivation, that is ∆C′D = (f ⊗D +D ⊗ g)∆C .
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2.2.4 Dual cochain algebra

Let (C∗, dC ,∆C) be a dg coalgebra and let (A,µA : A⊗A→ A) be a (nondifferential and nongraded)
algebra. Then the dual cochain complex (C∗ = Hom(C∗, A), δ∗), δ∗(φ) = φdC , becomes a dg algebra
(of cochain type, i.e., the degree of the differential is +1) with the multiplication (cup product)

µ∗ : Hom(C∗, A)⊗Hom(C∗, A)→ Hom(C∗, A)

given by
φ ^ ψ = µ∗(φ⊗ ψ) = µA(φ⊗ ψ)∆C .

The obtained object (C∗ = Hom(C∗, A), δ∗(φ) = φdC ,^) is called the cochain dg algebra of the chain
dg coalgebra (C∗, dC ,∆C) with coefficients in A.

2.3 Applications in topology

2.3.1 Alexander–Whitney diagonal

Let V be an ordered simplicial complex (1.2.3) and let (C∗(V ), d∗) be its chain complex. There exists
a comultiplication

∆ : C∗(V )→ C∗(V )⊗ C∗(V ),

the so called Alexander–Whitney diagonal, which turns (C∗(V ), d∗,∆) into a dg coalgebra. This
diagonal is defined by

∆(vi0 , . . . , vin) =

n∑
k=0

(vi0 , . . . , vik)⊗ (vik , . . . , vin).

2.3.2 Cohomology algebra

Let again (A,µA : A ⊗ A → A) be a (nondifferential and nongraded) associative algebra. The
Alexander–Whitney diagonal of C∗(V ) induces on the dual cochain complex

C∗(V,A) = Hom(C∗(V ), A), δ∗)

the cup product
^: C∗(V )⊗ C∗(V )→ C∗(V )

which for φ ∈ Cp(V,A), ψ ∈ Cq(V,A)) looks as

φ ^ ψ(vi0 , . . . , vip+q ) = φ(vi0 , . . . , vip) · ψ(vip , . . . , vip+q ).

This turns C∗(V,A), δ∗,^) into a dg algebra.
This structure induces on the cohomology H∗(V,A) a structure of graded algebra.
The cohomology algebra H∗(V,A) is a more powerful invariant than the cohomology groups: the

two spaces X = S1 timesS1 and Y = S1 ∨ S1 ∨ S2 have the same cohomology groups

H0 = R, H1 = R · a⊕R · b, H2 = R · c,

with generators a, b in dimension 1 and c in dimension 2, but they have different cohomology algebras,
namely a · b = 0 in H∗(Y ) and a · b = c in H∗(X).

3 Bar and cobar functors

Here we describe two classical adjoint functors

B : DGAlg // DGCoalg : Ωoo ,

the bar functor B : DGAlg → DGCoalg from the category of dg algebras to the category of dg
coalgebras, and the cobar functor Ω : DGCoalg → DGAlg in the opposite direction.

We start with the definitions of free (in the category of graded algebras) and cofree (in the category
of graded coalgebras) objects.
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3.1 Tensor algebra and tensor coalgebra

3.1.1 Tensor algebra

Let V = {Vi} be a graded R-module. The tensor algebra generated by V is defined as

T (V ) = R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · · =
∞∑
i=0

V ⊗i

with grading dim(a1⊗ · · ·⊗ am) = dim a1 + · · ·+ dim am, and with multiplication µ : T (V )⊗T (V )→
T (V ) given by

µ
(
(a1 ⊗ · · · ⊗ am)⊗ (am+1 ⊗ · · · ⊗ am+n)

)
= a1 ⊗ · · · ⊗ am+n.

The unit element for this multiplication is 1 ∈ R = V ⊗0.
By ik we denote the obwious inclusion ik : V ⊗k → T (V ).

3.1.2 Universal property of T (V )

The tensor algebra T (V ) is the free object in the category of graded algebras: for an arbitrary graded
algebra (A,µA) and a map of graded modules α : V → A there exists a unique morphism of graded
algebras fα : T (V )→ A such that fα(v) = α(v) (i.e., fαi1 = α).

This morphism fα (which is called multiplicative extension of α) is defined as fα(a1⊗ · · · ⊗ am) =
α(a1) · · · · · α(am). Or, equivalently fα is described by:

fαik =
∑
k

µkA(α⊗ · · · ⊗ α),

where µkA : A⊗k → A is the k-fold iteration of the multiplication µA : A ⊗ A → A, namely, µ1
A = id,

µ2
A = µA, µkA = µA(µk−1

A ⊗ id).
So, to summarize, we have the following universal property

V
i1 //

α

''

T (V )

fα=
∑
k

µkA(α⊗···⊗α)

��
A

.

3.1.3 Universal property for derivations

The tensor algebra has an analogous universal property also for derivations: for a graded algebra
(A,µ), two homomorphisms α, α′ : V → A of degree 0 and a homomorphism β : V → A of degree
k there exist: morphisms of graded algebras fα, fα′ : T (V ) → A and a unique (fα, fα′) derivation of
degree k

Dβ : T (V )→ A

such that fα(v) = α(v), f ′α(v) = α′(v) and D(v) = β(v), i.e., the following diagram commutes.

V
i1 //

β
''

T (V )

D

��
A

.

The derivation D is defined as

D(a1 ⊗ · · · ⊗ an) =

n∑
k=1

µn
(
α(a1)⊗ · · · ⊗ α(ak−1)⊗ β(ak)⊗ α′(ak+1)⊗ · · · ⊗ α′(an)

)
.

Or, equivalently

D · in =
∑
k

µn
(
α⊗(k−1) ⊗ β ⊗ α′⊗(n−k))

in.
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3.1.4 Tensor coalgebra

Here is the dualization of the previous notion.
Let V = {Vi} be a graded R-module. The tensor coalgebra cogenerated by V is defined (again) as

T c(V ) = R⊕ V ⊕ V ⊗ V ⊕ V ⊗ V ⊗ V ⊕ · · · =
∞∑
i=0

V ⊗i

with the same grading
dim(a1 ⊗ · · · ⊗ am) = dim a1 + · · ·+ dim am,

but now with comultiplication ∆ : T c(V )→ T c(V )⊗ T c(V ) given by

∆(a1 ⊗ · · · ⊗ an) =

n∑
i=0

(a1 ⊗ · · · ⊗ ai)⊗ (ai+1 ⊗ · · · ⊗ an),

here ( ) = 1 ∈ R = V ⊗0.
By pk we denote the obwious projection pk : T c(V )→ V ⊗k.

3.1.5 Universal property of T c(V )

In order to formulate the about universal property in this case we have to introduce some dimensional
restrictions in this case.

Let V = {. . . , 0, 0, V1, V2, . . . } be a connected graded module, that is, Vi = 0 for i ≤ 0.
The tensor coalgebra of such V is the cofree object in the category of connected graded coalgebras:

for a map of graded modules α : C → V there exists a unique morphism of graded coalgebras
fα : C → T c(V ) such that p1fα = α, i.e., the following diagram commutes

V T c(V )
p1oo

C

α

gg

fα

OO
.

The coalgebra map fα (which is called comultiplicative coextension of α) is defined as

fα =
∑
k

(α⊗ · · · ⊗ α)∆k,

where ∆k : C → C⊗k is the k-th iteration of the comultiplication ∆ : C → C ⊗ C, i.e.,

∆1 = id, ∆2 = ∆, ∆k = (∆k−1 ⊗ id)∆.

3.1.6 Universal property for coderivations

The tensor coalgebra has a similar universal property also for coderivations.
Namely, for a graded coalgebra (C,∆), two homomorphisms of degree 0 α, α′ : C → V and a

homomorphism of degree k β : C → V there exist: morphisms of graded coalgebras fα, fα′ : C → T (V )
and a unique (fα, fα′)-coderivation of degree k ∂β : C → T c(V ) such that p1∂β = β, i.e., commutes
the following diagram:

V T c(V )
p1oo

C

β

gg

∂β

OO
.

The coderivation ∂β is defined as

∂β =

∞∑
n=0

n∑
k=1

(α⊗(k−1) ⊗ β ⊗ α′(n−k)
∆k.
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3.2 Shuffle comultiplication and shuffle comultiplication –
bialgebra structures on T (V ) and T ′(V )

In fact, T (V ) and T c(V ) coincide as graded modules, but the multiplication of T (V ) and the comul-
tiplication of T c(V ) are not compatible with each other, so they do not define a graded bialgebra
structure on the graded module T (V ) = T c(V ).

Nevertheless there exists the shuffle comultiplication

∇sh : T (V )→ T (V )⊗ T (V )

introduced by Eilenberg and MacLane [7], which turns (T (V ),∆sh, µ) into a graded bialgebra.
And dually, there exists the shuffle multiplication µsh : T c(V ) ⊗ T c(V ) → T c(V ) which turns

(T c(V ),∆, µsh) into a graded bialgebra.

3.2.1 Shuffle comultiplication – bialgebra structure on tensor algebra

There exists on this free graded algebra (T (V ), µ) a comultiplication ∇sh : T (V ) → T (V ) ⊗ T (V )
which is a morphism of graded algebras, and, consequently

turns (T (V ), µ,∇sh) into a graded bialgebra.
Namely, the shuffle comultiplication ∇sh : T (V )→ T (V )⊗T (V ) is a graded coalgebra map induced

by the universal property of T (V ) (3.1.2) by α : T (V )→ T (V )⊗ T (V ) given by α(v) = v⊗ 1 + 1⊗ v,
α(1) = 1⊗ 1.

This comultiplication is associative and in fact is given by

∇(v1 ⊗ · · · ⊗ vn) = 1⊗ (v1 ⊗ · · · ⊗ vn) + (v1 ⊗ · · · ⊗ vn)⊗ 1

+
∑
p

∑
σ∈sh(p,n−p)

(vσ(1) ⊗ · · · ⊗ vσ(p))⊗ (vσ(p+1) ⊗ · · · ⊗ vσ(n))

where sh(p, n − p) consists of all (p, n − p)-shuffles, that is all permutations of 1, . . . , n such that
σ(1) < · · · < σ(p) and σ(p+ 1) < · · · < σ(n).

3.2.2 Shuffle multiplication – bialgebra structure on tensor coalgebra

The shuffle multiplication µsh : T c(V )⊗ T c(V )→ T c(V ), introduced by Eilenberg and MacLane [7],
turns (T c(V ),∆, µsh) into a graded bialgebra.

This multiplication is defined as the graded coalgebra map induced by the universal property of
T c(V ) (3.1.5) by α : T c(V )⊗T c(V )→ V given by α(v⊗ 1) = α(1⊗ v) = v and α = 0 otherwise. This
multiplication is associative and in fact is given by

µsh
(
(v1 ⊗ · · · ⊗ vn)⊗ (vn+1 ⊗ · · · ⊗ vn+m)

)
=
∑
±vσ(1) ⊗ · · · ⊗ vσ(n+m),

where summation is taken over all (m,n)-shuffles, that is, over all permutations of the set (1, 2, . . . , n+
m) which satisfy the condition: i < j if 1 ≤ σ(i) < σ(j) ≤ n or n+ 1 ≤ σ(i) < σ(j) ≤ n+m.

Particularly,

µsh((v1)⊗ (v2)) = v1 ⊗ v2 ± v2 ⊗ v1,

µsh((v1)⊗ (v2 ⊗ v3) = v1 ⊗ v2 ⊗ v3 ± v2 ⊗ v1 ⊗ v3 ± v2 ⊗ v3 ⊗ v1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3 Bar and cobar constructions

3.3.1 Cobar construction

Let (C, d,∆) be a dg coalgebra with Ci = 0, i ≤ 1 and let s−1C be the desuspension of C, that is,
(s−1C)k = Ck+1.
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The cobar construction ΩC is defined as the tensor algebra T (s−1C). We use the following notation
for elements of this tensor coalgebra:

s−1a1 ⊗ · · · ⊗ s−1an = [a1, . . . , an].

So the dimension of [a1, . . . , an] is
∑
i

dim ai − n.

The differential dΩ : ΩC → ΩC is defined as

dΩ[a1, . . . , an] =
∑
i

±
[
a1, . . . , ai−1, dai, ai+1, . . . , an

]
+
∑
i

±
[
a1, . . . , ai−1,∆(ai), ai+1, . . . , an

]
.

In fact dΩ = ∂β where ∂β is the derivation defined by the above universal property (3.1.3) for

β[a] = da+ ∆a.

Besides, the properties of d and ∆ from the definition of a dg coalgebra (2.2.2) guarantee that the
restriction dΩdΩ|V = dΩdΩi1 is 0 and this, by the universal property (3.1.3), implies dΩdΩ = 0. Thus
ΩC ∈ DGAlg.

3.3.2 Bar construction

Let (A, d, µ = · ) be a dg algebra with Ai = 0 for i ≤ 1 and let sA be the suspension of A, that is
(sA)k = Ak−1.

As a graded coalgebra the bar construction BA is defined as the tensor coalgebra: T c(sA). We
use the following notation for elements of this tensor coalgebra

sa1 ⊗ · · · ⊗ san = [a1, . . . , an].

So the dimension of [a1, . . . , an] is
∑
i

dim ai + n.

The differential dB : BA→ BA is defined as

dB [a1, . . . , an] =
∑
i

±
[
a1, . . . , ai−1, dai, ai+1, . . . , an

]
+
∑
i

±
[
a1, . . . , ai · ai+1, . . . , an

]
.

In fact, dB = Dβ where Dβ is the coderivation defined by the above universal property (3.1.6) for

β[a1, . . . , an] =


[da1] for n = 1;

[a1 · a2] for n = 2

0 for n > 2.

Besides, the properties of d and µ from the definition of a dg algebra (2.1.2) guarantee that
the projection p1dBdB is 0 and this, by the universal property (3.1.6), implies dBdB = 0. Thus
BA ∈ DGCoalg.

3.3.3 Bar construction of a commutative dg algebra

Assume now that (A, d, µ = · ) is a commutative dg algebra. How the commutativity reflects on the
bar construction BA?

By definition, the differential dB : BA→ BA is a coderivatian with respect to the standard graded
coalgebra structure of the tensor coalgebra BA = T c(sA). As it was mentioned above in (3.2.2), BA
carries also the shuffle product µsh : T c(sV )⊗T c(sA)→ T c(sA) which turns it into a graded bialgebra.

Proposition 3.1. If a dg algebra (A, d, µ = · ) is commutative, the differential dβ : BA→ BA is not
only a coderivation with respect to comultiplication ∆ but also a derivation with respect to the shuffle
product µsh. So in this case the bar construction (BA,∆, µsh) is a dg bialgebra.

Proof. The map Φ : BA⊗BA→ BA defined as

Φ = dβµsh − µsh(dβ ⊗ id+ id⊗ dβ)

is a coderivation, see the arguments in (2.2.1). Thus, according to universal the property (3.1.6)
of T c(s−1A), the map Φ is trivial if and only if p1Φ = 0. This is equivalent to the commutativity
of A.
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3.3.4 Adjunction

Let (C, d,∆) be a dg coalgebra and (A, d, µ) a dg algebra. A twisting cochain [5] is a homomorphism
τ : C → A of degree +1 satisfying Browns’ condition

dτ + τd = τ ^ τ, (3.1)

where τ ^ τ ′ = µA(τ ⊗ τ ′)∆. We denote by T (C,A) the set of all twisting cochains τ : C → A.

There are universal twisting cochains C → ΩC and BA → A, namely, the obvious inclusion and
projection, respectively. Here are essential consequences of the condition (4.1):

(i) The multiplicative extension fτ : ΩC → A is a map of dg algebras, so there is a bijection
T (C,A)←→ HomDG−Alg(ΩC,A);

(ii) The comultiplicative coextension fτ : C → BA is a map of dg coalgebras, so there is a bijection
T (C,A)←→ HomDG−Coalg(C,BA).

Thus we have two bijections

HomDG−Alg(ΩC,A)←→ T (C,A)←→ “ HomDG−Coalg(C,BA).

Besides, there are two weak equivalences (homology isomorphisms)

αA : ΩB(A)→ A, βC : C → BΩ(C).

4 Twisting cochains and functor D

4.1 Brown’s twisting cochains

4.1.1 Definition of twisting cochain

Let (K, dK : K∗ → K∗−1,∇K : K → K ⊗ K) be a dg coalgebra and let (A, dA : A∗ → A∗−1, µA :
A ⊗ A → A) be a dg algebra. Then C∗(K,A) = Hom(K,A) with differential δα = αdK + dAα and
multiplication α ^ β = µA(α⊗ β)∇K is a dg algebra.

Definition 4.1. A Brown twisting cochain is a homomorphism

φ : K∗ → A∗−1,

i.e., degφ = −1, satisfying

dφ+ φd = φ ^ φ. (4.1)

Brown’s condition sometimes is called also Maurer-Cartan equation. It can be rewritten as dAφ+
φdK = µA(φ⊗ φ)∇K .

The set of all twisting cochains φ : K → A we denote as Tw(K,A).

4.1.2 Twisted tensor product

Let (M,dM , ν : A⊗M →M) be a dg A-module. Then any twisting cochain φ : K → A determines a
homomorphism dφ : K ⊗M → K ⊗M by

dφ(k ⊗m) = dKk ⊗m+ k ⊗ dMm+ (k ⊗m) ∩ φ

where

(k ⊗m) ∩ φ = (idK ⊗ ν)(idK ⊗ φ⊗ idM )(∇K ⊗ idM )(k ⊗m).

Brown’s condition dφ = φ ^ φ implies that dφdφ = 0.

Definition 4.2. The twisted tensor product (K⊗φM,dφ) is defined as the chain complex (K⊗M,dφ).
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4.1.3 Application: model of fibration

Let (E, p,B, F,G) be a fibre bundle with base B, fibre F , structure group G. So K = C∗(B) is a dg
coalgebra, A = C∗(G) is a dg algebra, M = C∗(F ) is a dg module over A. Then, by Brown’s theorem
there exists a twisting cochain φ : K = C∗(B)→ A = C∗(G) such that the twisted tensor product

(K ⊗φM,dφ) =
(
C∗(B)⊗φ:C∗(B)→C∗−1(G) C∗(F ), dφ

)
gives the homology of fibre space H∗(E). It is clear that φ determines all differentials of the Serre
spectral sequence also.

Brown’s twisting cochain φ is not determined uniquely, so it would be useful to have a possibility
to choose one convenient for computations.

4.1.4 Twisting cochains and the Bar and cobar constructions

By the universal property of the tensor coalgebra from (B1.3) any homomorphism φ : K → A of
degree −1 induces a graded coalgebra map fφ : K → T c(sA) by

fφ =
∑
i

(φ⊗ · · · ⊗ φ)∇iK .

If, in addition, φ : K → A is a twisting cochain, that is, it satisfies Brown’s condition δφ = φ ^ φ,
then fφ : K → B(A) is a chain map, i.e., is a map of dg coalgebras: since the tensor coalgebra is
cofree one has the equality dBfφ = fφdK if and only if equal the projections pdBfφ and = pfφdK are
equal, and this is exactly Brown’s condition δφ = φ ^ φ.

Conversely, any dg coalgebra map f : K → BA is fφ for φ = pf : K → BA→ A. In fact we have
a bijection MorDGCoalg(K,BA)←→ Tw(K,A).

Dually, by the universal property of the tensor algebra (B1.2), any homomorphism φ : K → A of
degree −1 induces a graded algebra map gφ : T (s−1K)→ A by

gφ =
∑
k

µk(α⊗ · · · ⊗ α).

If, in addition, φ : K → A is a twisting cochain, that is, it satisfies Brown’s condition δφ = φ ^ φ,
then gφ : ΩK → A is a chain map, i.e., it is a map of dg algebras: since of freeness of tensor algebra
one has the equality dAgφ = gφdΩ if and only if equal the restrictions dAgφi = gφdΩi and this is
exactly the Brown’s condition δφ = φ ^ φ.

Conversely, any dg algebra map g : ΩK → A is gφ for φ = gi : K → ΩK → A. In fact we have a
bijection MorDGAlg(ΩK,A)←→ Tw(K,A).

So we have bijections

Tw(K,A)

≈

vv

≈

((
MorDGAlg(ΩK,A) MorDGCoalg(K,BA)

.

4.1.5 (Co)universal twisting cochains

The standard inclusion i : K → ΩK satisfies Brown’s condition. So it is a (so called universal) twisting
cochain. Thus it induces two chain maps

fi : ΩK → ΩK and gi : K → BΩK.

The first one is the identity map and the second one a quasi isomorphism (homology isomorphism).
Dually, the standard projection p : BA → A satisfies the Brown’s condition, so it is a (so called

couniversal) twisting cochain. Thus it induces two chain maps

fp : ΩBA→ A and gp : BA→ BA.

The first one is a quasi isomorphism (homology isomorphism) and the second one is the identity map.
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4.2 Berikashvili’s functor D

4.2.1 Equivalence of twisting cochains

Two twisting cochains φ, ψ : K → A are equivalent (Berikashvili [3]) if there exists c : K → A,
deg c = 0, c = Σici, ci : Ci → Ai with c0 = c|C0 = 0, such that

ψ = φ+ δc+ ψ ^ c+ c ^ φ, (4.2)

notation φ ∼c ψ.

This is an equivalence relation:

φ ∼c=0 φ; φ ∼c φ′, φ′ ∼c′ φ′′ =⇒ φ ∼c+c′+c′^c φ
′′

and φ ∼c φ′ =⇒ φ′ ∼c′ φ where c′ can be solved from c+ c′ + c′ ^ c = 0 inductively.

This notion of equivalence allows to perturb twisting cochains. Let

φ = φ2 + φ3 + · · ·+ φn + · · · : K → A, φn : Kn → An−1

be a twisting cochain, and let’s take an arbitrary cochain c = cn : Kn → An. Then there exists a
twisting cochain Fcnφ = ψ : K → A such that φ ∼cn ψ. Actually the components of the perturbed
twisting cochain

Fcnφ = ψ = ψ2 + ψ3 + · · ·+ ψn + · · ·

can be solved from (4.2) inductively, and the solution particularly gives that the perturbation Fcnφ
does not change the first components, i.e. ψi = φi for i < n and ψn = φn + dAcn.

The main benefit of this notion is that the equivalent twisting cochains define isomorphic twisted
tensor products:

Theorem 4.1. If φ ∼c ψ then

(K ⊗φM,dφ)
Fc // (K ⊗ψ M,dψ)

given by Fc(k ⊗m) = (k ⊗m) + (k ⊗m) ∩ c is an isomorphism of dg modules.

The inverse (K ⊗ψ M,dψ)
Fc′ // (K ⊗φM,dφ) is defined by c′ : K → A which, as above, can be

solved inductively from c+ c′ + c′ ^ c = 0.

Let

Tw(K,A) =
{
φ : 3K → A, δφ = φ ◦ φ

}
be the set of all twisting cochains.

Definition 4.3. Berikasvili’s functor D(K,A) is defined as the factorset D(K,A) = Tw(K,A)
∼ .

Berikashvili’s relation of equivalence of twisting cochains allows to perturb a given twisting cochain
so as to get the simplest one to simplify calculations.

4.2.2 Equivalence of twisting cochains and homotopy of induced maps

How does the equivalence of twistimg cochains affect induced maps K → BA and ΩK → A?

Theorem 4.2. If φ ∼c ψ then fφ and fψ are homotopic as dg coalgebra maps: the coderivation chain
homotopy D(c) : K → BA is given by

D(c) =
∑
i,j

(
ψ ⊗ · · · (j times) · · · ⊗ ψ ⊗ c⊗ φ⊗ · · · ⊗ φ

)
∇iK . (4.3)
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Proof. The homotopy D(c) satisfies fφ − fψ = dBD(c) + D(c)dK because the projection of this
condition on A gives pfφ−pfψ = pdBD(c)+pD(c)dK and this is exactly the condition (4.2). Besides,
D(c) is a fφ − fψ-coderivation, that is,

∇BD(c) = (fψ ⊗D(c) +D(c)⊗ fφ)∇K .

This also follows from the universal property of the tensor coalgebra and the extension rule (4.3).
The converse is also true: if fφ and fψ are homotopic by a coderivation homotopy D : K → BA

then φ ∼c ψ by c = p1D.
The dual statement is also true: gφ, gψ : ωK → A are homotopic in the category of dg algebras if

and only if φ ∼ ψ.
So we have bijections

D(K,A)

≈

ww

≈

((
[ΩK,A]DGAlg [(K,BA)]DGCoalg

this means that B and Ω are adjoint functors.

4.2.3 Lifting of twisting cochains

Any dg algebra map f : A→ A′ induces the map Tw(K,A)→ Tw(K,A′): if φ : K →M is a twisting
cochain so is the composition fφ : K → A → A′. Moreover, if φ ∼c φ′ then fφ ∼fc fφ′. Thus we
have a map D(f) : D(K,A)→ D(K,A′).

Theorem 4.3 (Berikashvili [3]). Let (K, dK ,∇K) be a dg colagebra with free Ki and let (A, dA, µA) be
a connected dg algebra. If f : A→ A′ is a weak equivalence of connected dg algebras (i.e., a homology
isomorphism), then

D(f) : D(K,A)→ D(K,A′)

is a bijection.

Particularly this theorem means that [K,BA]→ [K,BA′] is a bijection.
Below we’ll need the surjectivity part of this theorem whose proof we sketch here.

Theorem 4.4. Let (K, dK ,∇K) be a dg colagebra with free Kis and let f : (A, dA, µA)→ (A′, dA′ , µA′)
be a weak equivalence of connected dg algebras. Then for an arbitrary twisting cochain

φ = φ2 + φ3 + · · ·+ φn + · · · : K → A′

there exists a twisting cochain

ψ = ψ2 + ψ3 + · · ·+ ψn + · · · : K → A

such that φ ∼ fψ.

Proof. Start with a twisting cohain φ = φ2 +φ3 + · · ·+φn + · · · : K → A′. Brown’s defining condition
(4.1) gives dAφ2 = 0, and since f : A → A′ is a homology isomorphism there exist ψ2 : K2 → A1

and c′2 : K2 → A′2 such that dAψ2 = 0 and fψ2 = φ2 + dA′c
′
2 (we assume all Kn are free modules).

Perturbing φ by this c′2 we obtain a new twisting cochain Fc′2φ for which (Fc′2φ)2 = φ2 + dA′c
′
2 = fψ2.

So we can assume that φ2 = fψ2.
Assume now that we already have ψ2, ψ3, . . . , ψn−1 which satisfy (4.1) in appropriate dimensions

and fψk = φk, k = 2, 3, . . . , n− 1. We need the next component ψn : Kn → An−1 such that

dAψn = ψn−1dK +

n−2∑
i=2

ψi ^ ψn−i
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and c′n : Kn → A′n such that fψn = φn+dA′c
′
n. Then perturbing φ by c′n we obtain new φn for which

fψn = φn, and this will complete the proof.
Let us write

Un = ψn−1dK +

n−2∑
i=2

ψi ^ ψn−i : Kn → An−2,

U ′n = φn−1dK +

n−2∑
i=2

φi ^ φn−i : Kn → A′n−2.

So we have U ′n = dA′φn and we want ψn : Kn → An−1, c′n : Kn → A′n such that Un = dAψn and
fψn = φn + dA′c

′
n.

First, it is not hard to check that dAUn = 0, that is, Un maps Kn to cycles Z(An−2) ⊂ An−2.
Then

fUn = f(ψn−1dK +

n−2∑
i=2

ψi ^ ψn−i)

= fψn−1dK +

n−2∑
i=2

fψi ^ fψn−i = φn−1dK +

n−2∑
i=2

φi ^ φn−i = U ′n = dAφn,

thus, fUn maps Kn to boundaries B(An−2) ⊂ An−2. Since f : A → A′ is a homology isomorphism,
there is ψn : Kn → An−1 such that dAψn = Un.

Now we must take care of the condition fψn = φn. It is clear that dAfψn = dAφn. Let us
denote by z′n = fψn−φn; this is the homomorphism which maps Kn to cycles Z(A′n−1). Again, since
f : A → A′ is a homology isomorphism there exist zn : Kn → Z(An−1) and c′n : Kn → A′n such that
fzn = z′n − dA′c′n. Let us define ψn = ψn − zn. Then dAψn = dAψn and

fψn = fψn − fzn = (φn + z′n)− (z′n − dA′c′n) = φn + dA′c
′
n.

Perturbing φ by this c′n we obtain Fc′nφ with (Fc′nφ)n = φn + d′Ac
′
n = fψn.

5 Stasheff’s A∞-algebras

5.1 Category of A∞-algebras

The notion of A∞-algebra was introduces by J. Stasheff [31]. This notion generalizes the notion of
differential graded algebra and in fact it is so called strong homotopy associative algebra where the
strict associativity is replaced with associativity up to higher coherent homotopies.

5.1.1 Notion of A∞-algebra

Definition 5.1. An A∞-algebra is a graded module M = {Mk}k∈Z equipped with a sequence of
operations {

mi : M ⊗ · · · (i times) · · · ⊗M →M, i = 1, 2, 3, . . .
}

satisfying the conditions mi((⊗iM)q) ⊂Mq−i+2, that is degmi = 2− i, and

i−1∑
k=0

i−k∑
j=1

±mi−j+1

(
a1 ⊗ · · · ⊗ ak ⊗mj(ak+1 ⊗ · · · ⊗ ak+j)⊗ · · · ⊗ ai

)
= 0. (5.1)

For i = 1 this condition reads
m1m1 = 0.

For i = 2 this condition reads

m1m2(a1 ⊗ a2)±m2(m1(a1)⊗ a2)±m2(a1 ⊗m1(a2)) = 0.
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For i = 3 this condition reads

m1m3(a1 ⊗ a2 ⊗ a3)±m3(m1(a1)⊗ a2 ⊗ a3)±m3(a1 ⊗m1(a2)⊗ a3)

±m3(a1 ⊗ a2 ⊗m1(a3))±m2(m2(a1 ⊗ a2)⊗ a3)±m2(a1 ⊗m2(a2 ⊗ a3)) = 0.

These three conditions mean that for an A∞-algebra (M, {mi}) the first two operations form a nonas-
sociative dga (M,m1,m2) with differential m1 and multiplication m2 which is associative just up to
homotopy and the suitable homotopy is the operation m3.

Special case: An A∞-algebra (M, {m1,m2,m3 = 0,m4 = 0, . . . }) is a strictly associative dg algebra.

5.1.2 Morphism of A∞-algebras

This is the notion from [16].

Definition 5.2. A morphism of A∞-algebras

{fi} : (M, {mi})→ (M ′, {m′i})

is a sequence {fi : ⊗iM →M ′, i = 1, 2, . . . , deg f1 = 1− i} such that

i−1∑
k=0

i−k∑
j=1

±fi−j+1

(
a1 ⊗ · · · ⊗ ak ⊗mj(ak+1 ⊗ · · · ⊗ ak+j)⊗ · · · ⊗ ai

)
=

i∑
t=1

∑
k1+···+kt=i

±m′t
(
fk1(a1 ⊗ · · · ⊗ ak1)⊗ · · · ⊗ fkt(ai−kt+1 ⊗ · · · ⊗ ai)

)
. (5.2)

In particular for n = 1 this condition gives f1m1(a) = m′1f1(a), i.e., f1 : (M,m1)→ (M ′,m′1) is a
chain map; for n = 2 it gives

f1m2(a1 ⊗ a2) +m′2(f1(a1)⊗ f1(a2)) = m′1f2(a1 ⊗ a2) + f2(m1a1 ⊗ a2) + f2(a1 ⊗m1a2),

thus f1 : (M,m1,m2)→ (M ′,m′1,m
′
2) is multiplicative just up to the chain homotopy f2.

The composition of A∞ morphisms

{hi} : (M, {mi})
{fi} // (M ′, {m′i})

{gi} // (M ′′, {m′′i })

is defined as

hn(a1 ⊗ · · · ⊗ an) =

n∑
t=1

∑
k1+···+kt=n

gn
(
fk1(a1 ⊗ · · · ⊗ ak1)⊗ · · · ⊗ fkt(an−kt+1 ⊗ · · · ⊗ an)

)
. (5.3)

The bar construction argument (see (5.1.3) below) allows to show that so defined composition satisfies
the condition (5.2).

Special case: A morphism of A∞-algebras

{f1, f2 =0, f3 = 0, . . . } :
(
M, {m1,m2,m3 =0,m4 =0, . . . }

)
→
(
M, {m1,m2,m3 =0,m4 =0, . . . }

)
e is ordinary map of DG-algebras. In fact, the category of dg algebras is a subcategory of the category
of A∞-algebras.
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5.1.3 Bar construction of an A∞-algebra

Let (M, {mi}) be an A∞-algebra. The structure maps mi define the map β : T c(s−1M)→ s−1M by
β[a1, . . . , an] = [s−1mn(a1⊗ · · ·⊗ an)]. Extending this β as a coderivation (see the universal property
(3.1.6)) we obtain dβ : T c(s−1M)→ T c(s−1M) which in fact looks as

dβ [a1, . . . , an] =
∑
k

±
[
a1, . . . , ak,mj(ak+1 ⊗ · · · ⊗ ak+j), ak+j+1, . . . an

]
.

The defining condition (5.1) of an A∞-algebra guarantees that dβdβ = 0: the composition of coderiva-
tions dβdβ : T c(s−1M)→ T c(s−1M) is a coderivation and the defining condition (5.1) is nothing else
than that p1dβdβ = 0 and this is equivalent to dβdβ = 0 since the tensor coalgebra is cofree.

The obtained dg coalgebra (T c(s−1M), dβ ,∆) is called bar construction of the A∞-algebra
(M, {mi}) and is denoted by B(M, {mi}).

For an A∞-algebra of type (M, {m1,m2, 0, 0, . . . }), i.e., for a strictly associative dg algebra, this
bar construction coincides with the ordinary bar construction of this dg algebra.

5.1.4 Bar interpretation of a morphism of A∞-algebras

A morphism of A∞-algebras {fi} : (M, {mi}) → (M ′, {m′i}) defines a dg coalgebra map of bar con-
structions

F = B({fi}) : B(M, {mi})→ B(M ′, {m′i})

as follows: The collection {fi} defines the map α : T c(s−1M)→ s−1M by

α[a1, . . . , an] =
[
s−1fn(a1 ⊗ · · · ⊗ an)

]
.

Extending this α as a coalgebra map (3.1.2) we obtain F : T c(s−1M) → T c(s−1M) which in fact
looks like

F [a1, . . . , an] =
∑
±
[
fk1(a1 ⊗ · · · ⊗ ak1), . . . , fkt(an−kt+1 ⊗ · · · ⊗ an)

]
.

The defining condition (5.2) of an A∞-morphism is nothing else than p1dβ′F = p1Fdβ , and this is
equivalent to dβ′F = Fdβ , so F is a chain map.

Now we are able to show that the composition of A∞-morphisms is well defined: to the composition
of morphisms (5.3) corresponds the composition of dg coalgebra maps

B((M, {mi}))
B({fi})// B((M ′, {m′i}))

B({gi})// B((M ′′, {m′′i }))

which is a dg coalgebra map. Thus for the projection p1B({gi})B({fi}), i.e., for the collection {hi},
the condition (5.2) is satisfied.

5.1.5 Homotopy in the category of A∞-algebras

Two morphisms of A∞-algebras {fi}, {gi} : (M, {mi})→ (M ′, {m′i}) we call homotopic if there exists
a collection of homomorphisms {hi : (⊗iM) → M ′, i = 1, 2, . . . , deg hi = −i}, which satisfy the
following condition

fn(a1 ⊗ · · · ⊗ an)− gn(a1 ⊗ · · · ⊗ an)

=
∑

i+j=n+1

n−j∑
k=0

hi
(
a1 ⊗ · · · ⊗ ak ⊗mj(ak+1 ⊗ · · · ⊗ ak+j)⊗ · · · ⊗ an

)
+

∑
k1+···+kt=n

m′t

(
fk1(a1 ⊗ · · · ⊗ ak1)⊗ · · · ⊗ fki−1(ak1+···ki−2+1 ⊗ · · · ⊗ ak1+···ki−1)

⊗ hki(ak1+···+ki−1+1 ⊗ · · · ⊗ ak1+···+ki)

⊗ gki+1
(ak1+···ki+1 ⊗ · · · ⊗ ak1+···ki+1

)⊗ gkt(ak1+···kt−1+1 ⊗ · · · ⊗ ak1+···+kt)
)
. (5.4)
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In particular for n = 1 this condition means

f1(a)− g1(a) = m′1h1(a) + h1(m1a),

that is, the chain maps f1, g1 : (M,m1)→ (M ′,m′1) ar chain homotopic.
For n = 2 this condition means

f2(a1 ⊗ a2)− g2(a1 ⊗ a2) = m′1h2(a1 ⊗ a2) +m′2(f1(a1)⊗ h1(a2))

+m′2(h1(a1)⊗ g1(a2)) + h1(m2(a1 ⊗ a2)) + h2(m1a1 ⊗ a2) + h2(a1 ⊗m1a2).

5.1.6 Bar interpretation of homotopy

The collections {fi}, {gi}, {hi} define a homomorphism

D : B(M, {mi})→ B(M ′, {m′i})

by

D(a1 ⊗ · · · ⊗ an)

=
∑

k1+···+kt=n

fk1(a1 ⊗ · · · ⊗ ak1)⊗ · · · ⊗ fki−1
(ak1+···ki−2+1 ⊗ · · · ⊗ ak1+···ki−1

)

⊗ hki(ak1+···+ki−1+1 ⊗ · · · ⊗ ak1+···+ki)⊗ gki+1
(ak1+···ki+1 ⊗ · · · ⊗ ak1+···ki+1

)

⊗ gkt(ak1+···kt−1+1 ⊗ · · · ⊗ ak1+···+kt),

which is a (B({fi}), B({gi}))-coderivation.
Besides, the condition (5.4) means nothing else than

p1

(
B({fi})−B({gi})

)
= p1(dm′D +Ddm),

and this, again since the tensor coalgebra is cofree, gives

B({fi})−B({gi}) = dm′D +Ddm,

that is, the dg coalgebra maps B({fi}) and B({gi}) are homotopic in the category of dg coalgebras.

5.1.7 Category DASH

The category DASH (Differential Algebras and Strongly Homotopy Multiplicative Maps) was first
considered in Halperin and Stasheff’s article [12]. The object are dg algebras, and a morphism
{fi} : (A, d, µ)→ (A′, d′, µ′) is defined as a collection of homomorphisms{

fi : ⊗iA→ A, i = 1, 2, . . . , deg fi = 1− i
}

which satisfies the following conditions∑
i

fn(a1 ⊗ · · · ⊗ ai−1 ⊗ dai ⊗ ai+1 ⊗ · · · ⊗ an)

+
∑
i

fn−1(a1 ⊗ · · · ⊗ ai−1 ⊗ ai · ai+1 ⊗ ai+2 ⊗ · · · ⊗ an)

=
∑
i

fi(a1 ⊗ · · · ⊗ ai) · fn−i(ai+1 ⊗ · · · ⊗ an). (5.5)

In particular, for n = 1 this condition gives f1d(a) = df1(a), i.e., f1 : (A, d)→ (A′, d′1) is a chain map;
for n = 2 it gives

f1(a1 · a2)− f1(a1) · f1(a2) = d′f2(a1 ⊗ a2) + f2(da1 ⊗ a2) + f2(a1 ⊗ da2),
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thus f1 : (A, d, µ)→ (A′, d′, µ′) is multiplicative up to the homotopy f2.
The existence of higher components {fi, i = 1, 2, 3, 4, . . . } is the reason why such a morphism is

called a Strongly Homotopy Multiplicative Map and the category is called DASH: Differential Algebras
and Strongly Homotopy multiplicative maps.

In fact this is a full subcategory of the category of A∞-algebras whose objects are ordinary dg-
algebras (A, d, µ) = (A, {m1 = d,m2 = µ,m3 = 0,m4 = 0, . . . }): the defining condition of an
A∞-morphism (5.2) here looks like (5.5).

Thus we have hierarchy of categories

DGAlg ⊂ DASH ⊂ A∞,

all three with notions of homotopies, and we have the commutative diagram of functors

DGAlg

B ))

⊂ DASH

B

��

⊂ A∞

Buu
DGCoalg

.

5.1.8 Minimality

Let {fi} : (M, {mi})→ (M ′, {m′i}) be a morphism of A∞-algebras. It follows from (5.2) that the first
component f1 : (M,m1)→ (M ′,m′1) is a chain map.

Let us define a weak equivalence of A∞-algebras as a morphism {fi} for which B({fi}) is a weak
equivalence (homology isomorphism) of dg coalgebras. The standard spectral sequence argument
allows to prove the following

Proposition 5.1. A morphism of A∞-algebras is a weak equivalence if and only if its first component
f1 : (M,m1)→ (M ′,m′1) is a weak equivalence of chain complexes.

Furthermore, it is easy to see that if {fi} : (M, {mi}) → (M ′, {m′i}) is an isomorphism of A∞
algebras then its first component f1 : (M,m1) → (M ′,m′1) is an isomorphism of chaian complexes.
Conversely, if f1 is an isomorphism, then {fi} is an isomorphism of A∞ algebras: The components of
the opposite morphism {gi} : (M ′, {m′i})→ (M, {mi}) can be solved inductively from the equation

{gi}{fi} = {idM , 0, 0, . . . }.

Thus we have the

Proposition 5.2. A morphism of A∞-algebras is an isomorphism if and only if its first component
f1 : (M,m1)→ (M ′,m′1) is an isomorphism of dg modules.

Definition 5.3. An A∞-algebra (M, {mi}) we call minimal if m1 = 0.

In this case (M,m2) is a strictly associative graded algebra.
The above propositions easily imply:

Proposition 5.3. Each weak equivalence of minimal A∞-algebras is an isomorphism.

Proof. Suppose f = {fi} : (M, {mi}) → (M ′, {m′i}) is a weak equivalence of A∞-algebras. Then by
(5.1) the chain map f1 : (M,m1 = 0)→ (M ′,m′1 = 0) induces an isomorphism of homology modules
f∗1 : H(M,m1 = 0)→ H(M ′,m′1 = 0), but

H(M,m1 = 0) = M and H(M ′,m1 = 0) = M ′.

So f1 is an isomorphism and by of (5.2) f is an isomorphism too.

This fact motivates the word minimal in this notion since Sullivan’s minimal model has a similar
property.
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5.2 A∞ twisting cochains

Here we are going to generalize the above material about twisting cochains and the functor D from
the case of dg algebras to the case of A∞ algebras, see [18], see also [29].

Start with a dg coalgebra (C, dC ,∇ : C → C ⊗C) and an A∞-algebra (M, {mi}). We’ll recall the
following multicooperations

∇i : C → C ⊗ · · · (i times) · · · ⊗ C → C, i = 1, 2, . . . ,

∇1 = id, ∇2 = ∇, ∇i = (∇i−1 ⊗ id)∇.

5.2.1 The notion of A∞-twisting cochain

An A∞-twisting cochain [18], [19] we have defined as a homomorphism φ : C →M of degree −1 (that
is φ : C∗ →M∗−1) satisfying the condition

φdC =

∞∑
i=1

mi(φ⊗ · · · ⊗ φ)∇i. (5.6)

Let Tw(C,M) be the set of all such twisting cochains.
Note that if for (M, {mi}) one has m>2 = 0, i.e., it is an ordinary dg algebra (M, {m1,m2, 0, 0, . . . })

then this notion coincides with Brown’ classical notion.

5.2.2 Bar interpretation

Any A∞ twisting cochain φ : C →M induces a dg-coalgebra map B(φ) : C → BM by

B(φ) =
∑
i

(φ⊗ · · · ⊗ φ)∇i.

So defined B(φ) automatically is a coalgebra map and the condition (5.6) guarantees that it is a chain
map.

Conversely, any dg coalgebra map f : C → BM is B(φ) for φ = p ◦ f : C → BM →M . In fact we
have a bijection

MorDGCoalg(C,BM)←→ Tw(C,M).

5.2.3 Equivalence of A∞-twisting cochains

Two A∞-twisting cochains φ, ψ : C →M are called equivalent [18] if there exists c : C →M , deg c = 0,
such that

φ− ψ = cdC +

∞∑
i=1

i−1∑
k=1

mi

(
φ⊗ · · · (k times) · · ·φ⊗ c⊗ ψ ⊗ · · ·ψ

)
∇i, (5.7)

notation φ ∼c ψ.
Again, if for (M, {mi}) one has m>2 = 0, i.e., it is an ordinary dg algebra (M, {m1,m2, 0, 0, . . . })

then this notion coincides with Berikashvili’s described above equivalence.

5.2.4 Bar interpretation

If φ ∼c ψ then B(φ) and B(ψ) are homotopic in the category of dg coalgebras: a chain homotopy
D(c) : C → BA is given by

D(c) =

∞∑
i=1

i−1∑
k=1

(φ⊗ · · · (k times) · · ·φ⊗ c⊗ ψ ⊗ · · ·ψ)∇i.

So defined D automatically is a B(φ), B(ψ)-coderivation and the condition (5.7) guarantees that it
realizes chain homotopy, that is, B(φ)−B(ψ) = dBD(c) +D(c)dC .



42 Tornike Kadeishvili, A∞-Algebra Structure in Cohomology and its Applications

5.2.5 The functor D̃

The functor D̃(C,M) ( [18]) is defined as the factorset

D̃(C,A) =
Tw(C,M)

∼
.

AnyA∞-algebra map f = {fi} : M →M ′ induces the map Tw(C,M)→ Tw(C,M ′): if φ : C →M
is an A∞-twisting cochain then so is

fφ = p′B(f)B(φ) =
∑
i

fi(φ⊗ · · · ⊗ φ)∇i : C → B(M)→ B(M ′)→M ′. (5.8)

Furthermore, if φ ∼c ψ then fφ ∼C fψ with

C =

∞∑
i=1

i−1∑
k=1

(
φ⊗ · · · (k times) · · ·φ⊗ c⊗ ψ ⊗ · · ·ψ

)
∇i.

Thus we have a map D̃(f) : D̃(C,M)→ D̃(C,M ′).
Dually, any dg coalgebra map g : C ′ → C induces a map Tw(C,M)→ Tw(C ′,M): if φ : C →M

is an A∞-twisting cochain so is the composition φg : C ′ → C → M . Moreover, if φ ∼c ψ then
φg ∼cg ψg. Thus we have a map D(g) : D(C,M)→ D(C ′,M).

5.2.6 Bar interpretation

Assigning to an A∞-twisting cohain φ : C → M the dg coalgebra map B(φ) : C → BM and having
in mind that φ ∼c ψ implies B(fφ) ∼D(c) B(ψ) we obtain the

Theorem 5.1. There is a bijection D̃(C,M)←→ [C,BM ]DGCoalg.

Taking C = B(M ′), the bar construction of an A∞-algebra (M ′, {m′i}) and having in mind that
[B(M ′), B(M)]DGCoalg is bijective to [M ′,M ]A∞ , the set of homotopy classes in the category of A∞-
algebras,we obtain the

Proposition 5.4. There is a bijection D(B(M ′),M)←→ [M ′,M ]A∞ .

5.2.7 Bijections

The following property of the functor D̃ makes it useful in the homotopy classification of maps.

Theorem 5.2 (see [18]).

(a) If {fi} : M →M ′ is a weak equivalence of A∞-algebras, then

D({fi}) : D(C,M)→ D(C,M ′)

is a bijection.

(b) If g : C → C ′ is a weak equivalence of connected dg coalgebras (i.e., a homology isomorphism),
then

D(g) : D(C ′,M ′)→ D(C,M ′)

is a bijection.

Combining we obtain

Proposition 5.5. A weak equivalence of A∞-algebras {fi} : M → M ′ and a weak equivalence of dg
coalgebras g : C → C ′ induce bijections

D(C,M)
D({fi})// D(C,M ′) D(C ′,M ′)

D(g)oo .
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The following theorem is an analogue of Berikashvilis’s Theorem 4.3 for A∞-algebras and was
proved in [18].

Theorem 5.3. Let (K, dK ,∇K) be a dg coalgebra with free Ki and let (M, {mi}) be a connected dg
algebra. If f = {fi} : (M, {mi})→ (M ′, {m′i}) is a weak equivalence of A∞-algebras then

D∞(f) : D∞(K,M)→ D∞(K,M ′)

is a bijection.

In fact this theorem means that [K,BM ]→ [K,BM ′] is a bijection. The theorem consists of two
parts:

Surjectivity. Any A∞-twisting cochain φ : K →M ′ can be lifted to an A∞-twisting cochain ψ : K →
M so that φ ∼ fψ.

Injectivity. If ψ ∼ ψ′ ∈ T∞(K,M), then fψ ∼ fψ ∈ T∞(K,M ′).

5.2.8 Lifting of A∞-twisting cochains

Below we’ll use the surjectivity part of this theorem whose proof we sketch here.

Theorem 5.4. Let (K, dK ,∇K) be a dg coalgebra with free Ki and let f : (M, {mi}) → (M ′, {m′i})
be a weak equivalence of connected A∞-algebras (that is, M0 = M ′0 = 0). Then for an arbitrary
A∞-twisting cochain

φ = φ2 + φ3 + · · ·+ φn + · · · : K →M ′

there exists an A∞-twisting cochain

ψ = ψ2 + ψ3 + · · ·+ ψn + · · · : K →M

such that φ ∼ fψ.

Proof. Start with an A∞-twisting cochain

φ = φ2 + φ3 + · · ·+ φn + · · · : K →M ′.

The condition (5.6) gives m1φ2 = 0, and since f : (M,m1)→ (M ′m′1) is homology isomorphism then
there exist ψ2 : K2 → M1 and c′2 : K2 → M ′2 such that m1ψ2 = 0 and fψ2 = φ2 +m′1c

′
2. Perturbing

φ by this c′2 we obtain Fc′2φ for which (Fc′2φ)2 = φ2 +m′1c
′
2 = fψ2.

Assume now that we already have ψ2, ψ3, . . . , ψn−1 which satisfy (5.6) and (5.8) in appropriate
dimensions, that is

m1ψk = ψk−1dK +

int(k/2)∑
i=2

∑
k1+···ki=k

mi(ψk1 ⊗ · · · ⊗ ψki)∇kK , k = 2, 3, . . . , n− 1 (5.9)

and

φk =

int(k/2)∑
i=1

∑
k1+···+ki=k

fi(ψk1 ⊗ · · · ⊗ ψki)∇iK , k = 1, 2, . . . , n− 1. (5.10)

We need the next component ψn : Kn → An−1 satisfying the condition (5.9) for k = n

m1ψn = ψn−1dK +

int(n/2)∑
i=2

∑
k1+···ki=n

mi(ψk1 ⊗ · · · ⊗ ψki)∇kK , (5.11)

and c′n : Kn → A′n such that

m1c
′
n + φn =

int(n/2)∑
i=1

∑
k1+···+ki=n

fi(ψk1 ⊗ · · · ⊗ ψki)∇iK . (5.12)
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Then perturbing φ by c′n we obtain new φn for which the condition (5.10) will be satisfied for k = n,
and this will complete the proof.

Let us put

Un = ψn−1dK +

int(n/2)∑
i=2

∑
k1+···ki=n

mi(ψk1 ⊗ · · · ⊗ ψki)∇kK ,

U ′n = φn−1dK +

int(n/2)∑
i=2

∑
k1+···ki=n

mi(φk1 ⊗ · · · ⊗ φki)∇kK ,

Vn =

int(n/2)∑
i=2

∑
k1+···+ki=n

fi(ψk1 ⊗ · · · ⊗ ψki)∇iK .

Then the needed conditions (5.11) and (5.12) become

Un = m1ψn, m′1c
′
n + φn = f1ψn + Vn.

First, it is possible to check that m1Un = 0 and f1Un = U ′n + m′1Vn. Having in mind that
U ′n = m′1φn the last condition means f1Un = m′1(φn + Vn). So Un is a map to m1-cycles

Un : Kn → Z(Mn−2) ⊂Mn−2

and f1Un maps Kn to boundaries

f1Un : Kn → B(M ′n−2) ⊂Mn−2.

Then since f1 : (M,m1) → (M ′,m′1) is a homology isomorphism, there exist ψn : Kn → Mn−1 such
that m1ψn = Un. So our ψn satisfies (5.11). Now let us perturb this φ in order to catch the condition
(5.12) too.

Using the above equality f1Un = m′1(φn + Vn), we have

m′1f1ψn = f1m1ψn = f1Un = m′1(φn + Vn)

i.e., m′1(f1ψn − (φn + Vn)) = 0. Thus

z′n = (f1ψn − (φn + Vn)) : Kn → Z(M ′n−1),

and again, since f1 : (M,m1)→ (M ′,m′1) is a homology isomorphism there exist zn : Kn → Z(Mn−1)
and c′n : Kn →M ′n such that z′n = f1zn −m′1c′n. Let’s define ψn = ψn − zn. Then

f1ψn = f1ψn − f1zn = (z′n + φn + Vn)− (z′n −m′1c′n) = φn + Vn.

5.3 C∞-algebras

This is the commutative version of the notion of A∞-algebra. For an A∞-algebra (M, {mi}) it is clear
what it means for the operation m2 : M ⊗M →M , but what about the commutativity of the higher
operations mi : M ⊗ · · · ⊗M →M, i ≥ 3? We are going to describe this now.

5.3.1 Shuffle product

It was mentioned in (3.2) that the tensor algebra (T (V ), µ) and the tensor coalgebra (T c(V ),∆)
coincide as graded modules, but the multiplication µ of T (V ) and the comultiplication ∆ of T c(V ) are
not compatible with each other, so they do not define a graded bialgebra structure on T (V ) = T c(V ).

But, as it was indicated in (3.2) there exists the shuffle multiplication µsh : T c(V )⊗T c(V )→ T c(V )
introduced by Eilenberg and MacLane [7] which turns (T c(V ),∆, µsh) into a graded bialgebra. This
multiplication is defined as a graded coalgebra map induced by the universal property of T c(V ) by
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α : T c(V )⊗ T c(V ) → V given by α(v ⊗ 1) = α(1⊗ v) = v and α = 0 otherwise. This multiplication
is associative and in fact is given by

µsh
(
[a1, . . . , am]⊗ [ai+1, . . . , an]

)
=
∑
±
(
[aσ(1), . . . , aσ(n)]

)
,

where the summation is taken over all (m,n)-shuffles. That is, over all permutations of the set
(1, 2, . . . , n + m) which satisfy the condition: i < j if 1 ≤ σ(i) < σ(j) ≤ n or n + 1 ≤ σ(i) < σ(j) ≤
n+m. In particular

[a] ∗sh [b] = [a, b]± [b, a],

[a] ∗sh [b, c] = [a, b, c]± [b, a, c]± [b, c, a].

5.3.2 The notion of C∞-algebra

Now we can define the notion of C∞-algebra, which is a commutative version of Stasheff’s notion of
A∞-algebra.

Definition 5.4 ( [10, 20, 27, 29]). A C∞-algebra is an A∞-algebra (M, {mi}) which additionally
satisfies the following condition: each operation mi vanishes on shuffles, that is, for a1, . . . , ai ∈ M
and k = 1, 2, . . . , i− 1

mi

(
µsh
(
(a1 ⊗ · · · ⊗ ak)⊗ (ak+1 ⊗ · · · ⊗ ai)

))
= 0. (5.13)

In particular, this gives

m2(a⊗ b) +m2(b⊗ a) = 0,

m3(a⊗ b⊗ c) +m3(a⊗ c⊗ b) +m3(c⊗ a⊗ b) = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i.e., the maps fi vanish on shuffles.

Definition 5.5. A morphism of C∞-algebras is defined as a morphism of A∞-algebras
{fi} : (M, {mi})→ (M ′, {m′i}) whose components fi vanish on shuffles, that is

fi
(
µsh(a1 ⊗ · · · ⊗ ak)⊗ (ak+1 ⊗ · · · ⊗ ai)

)
= 0. (5.14)

The composition is defined as in the A∞-case and the bar construction argument (see (5.3.3)
below) allows to show that the composition is a C∞-morphism.

In particular, this gives

f2(a⊗ b) +m2(b⊗ a) = 0,

f3(a⊗ b⊗ c) +m3(a⊗ c⊗ b) +m3(c⊗ a⊗ b) = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i.e., the maps fi vanish on shuffles.
In particular, for the operation m2 we have m2(a ⊗ b ± b ⊗ a) = 0, so a C∞-algebra of type

(M, {m1,m2, 0, 0, . . . }) is a commutative dg algebra (cdga) with the differential m1 and strictly as-
sociative and commutative multiplication m2. Thus the category of commutative dg algebras is a
subcategory of the category of C∞-algebras.

5.3.3 Bar interpretation of a C∞-algebra

The notion of C∞-algebra is motivated by the following observation. It is well known that if a dg
algebra (A, d, µ) is graded commutative then the differential of the bar construction BA is not only
a coderivation but also a derivation with respect to the shuffle product, so the bar construction
(BA, dβ ,∆, µsh) of a cdga is a dg bialgebra, see (3.3.3).

By definition the bar construction of an A∞-algebra (M, {mi}) is a dg coalgebra

B̃(M) = (T c(s−1M), dβ ,∆).

But if (M, {mi}) is a C∞-algebra, then B̃(M) becomes a dg bialgebra:
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Proposition 5.6. For an A∞-algebra (M, {mi}) the differential of the bar construction dβ is a deriva-
tion with respect to the shuffle product if and only if each operation mi vanishes on shuffles, that is
(M, {mi}) is a C∞-algebra.

Proof. The map Φ : T c(s−1M)⊗T c(s−1M)→ T c(s−1M) defined by Φ = dβµsh−µsh(dβ⊗id+id⊗dβ)
is a coderivation, see the arguments in (2.2.1). Thus, according to the universal property of the tensor
coalgebra (3.1.6) the map Φ is trivial if and only if p1Φ = 0, and the last condition means exactly
(5.13).

5.3.4 Bar interpretation of a morphism of C∞-algebras

A morphism of C∞ algebras has an analogous interpretation.

Proposition 5.7. Let {fi} : (M, {mi}) → (M ′, {m′i}) be an A∞-algebra morphism of C∞-algebras.

Then the induced map of bar constructions B̃{fi} is a map of dg bialgebras if and only if each fi
vanishes on shuffles, that is {fi} is a morphism of C∞-algebras.

Proof. The map Ψ = B̃{fi}µsh − µsh(B̃{fi} ⊗ B̃{fi}) is a coderivation, see the arguments in (2.2.1).
Thus, according to the universal property of the tensor coalgebra (3.1.6) the map Ψ is trivial if and
only if p1Ψ = 0, and the last condition means exactly (5.14).

Thus the bar functor maps the subcategory of C∞-algebras to the category of dg bialgebras.

5.3.5 Adjunctions

The bar and cobar functors

B : DGAlg → DGCoalg, Ω : DGCoalg → DGAlg

are adjoint and there exist standard weak equivalences ΩB(A)→ A, C → BΩC. So ΩB(A)→ A is a
free resolution of a dga A.

If A is commutative, the cobar-bar resolution is out of the category: ΩB(A) is not commutative.
In this case instead the cobar-bar functors we must use the adjoint functors Γ, A, see [32], which

we describe now.
For a commutative dg algebra the bar construction is a dg bialgebra, so the restriction of the bar

construction is the functor B : CDGAlg → DGBialg. Furthermore, the functor of indecomposables
Q : DGBialg → DGLieCoalg maps the category of dg bialgebras to the category of dg Lie coalgebras.
Let Γ be the composition

Γ : CDGAlg
B // DGBialg

Q // DGLieCoalg .

There is the adjoint of Γ A : DGLieCoalg → CDGAlg, which is dual to the Chevalley–Eilenberg
functor. There is the standard weak equivalence AΓA→ A. This is the commutative analogue of the
standard weak equivalence ΩB(A)→ A from (3.3.4).

6 Minimal A∞ and C∞-algebras and Hochschild and
Harrison cohomology

Here we present the connection of the notion of minimal A∞ (resp. C∞) algebra with the Hochschild
(resp. Harrison) cochain complexes, studied in [20], see also [25].

6.1 Hochschild cohomology

Below we describe the classical Hochschild cochain complex [14] and present also some additional
structures on it which will be essential to describe minimal A∞ algebra structures.
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6.1.1 Hochschild cochain complex

Let A be an algebra and let M be a bimodule over A. The Hochschild cochain complex is defined as

C∗(A,M) =
∑

Cn(A,M), Cn(A,M) = Hom(⊗nA,M),

the coboundary operator δ : Cn(A,M)→ Cn+1(A,M) is given by

δf(a1 ⊗ · · · ⊗ an+1)

= a1 · f(a2 ⊗ · · · ⊗ an+1) +
∑
k

±f(a1 ⊗ · · · ⊗ ak · ak+1 ⊗ · · · ⊗ an+1)± f(a1 ⊗ · · · ⊗ an) · an+1.

The Hochschild cohomology of A with coefficients in M is defined as the homology of this cochain
complex and is denoted by Hoch∗(A,M).

If A and M are graded then each Cn(A,M) is graded too: Cn(A,M) =
∑
k

Cn,k(A,M) where

Cn,k(A,M) = Homk(⊗nA,M); here Homk means homomorphisms of degree k. So the Hochschild
cochain complex is bigraded in this case.

It is clear that δ maps Cn,k(A,M) to Cn+1,k(A,M), so (C∗,k(A,M), δ) is a subcomplex in
(C∗(A,M), δ). Thus Hochschild cohomology in this case is bigraded:

Hochn(A,M) =
∑
k

Hochn,k(A,M),

where Hochn,k(A,M) is the n-th homology module of (C∗,k(A,M), δ).
For our needs instead of M we take the algebra A itself. The complex C∗,∗(A,A) is a bigraded

differential algebra with respect to the following cup product: for f ∈ Cm,k(A,A) and g ∈ Cn,t(A,A)
the product f ^ g ∈ Cm+n,k+t(A,A) is defined by

f ^ g(a1 ⊗ · · · ⊗ am+n) = f(a1 ⊗ · · · ⊗ am) · g(an+1 ⊗ · · · ⊗ am+n),

and the Hochschild differential is a derivative:

δ(f ^ g) = δf ^ g ± f ^ δg.

6.1.2 Gerstenhabers circle product

Besides this product C∗,∗(A,A) there exist much richer and important algebraic operations, finally
forming a hGa (homotopy Gerstenhaber algebra) structure. First of all, there is Gerstenhaber’s so
called circle product [8] f◦g, sometimes called Gerstenhabers brace f{g}, but let us denote it as f ^1 g
since it has properties very similar to Steenrod’s ^1 product in the cochain complex of a topological
space. Here is the definition of this Gerstenhabers product: for f ∈ Cm,s(A,A), g ∈ Cn,t(A,A) their
^1 product is defined as

f ^1 g(a1 ⊗ · · · ⊗ am+n−1)

=

m−1∑
k=0

±f
(
a1 ⊗ · · · ⊗ ak ⊗ g(ak+1 ⊗ · · · ⊗ ak+n)⊗ · · · ⊗ am+n−1

)
∈ Cm+n−1,s+t(A,A).

In [20], see also [25], it is shown that Gerstenhabers circle = brace = ^1 product satisfies Steenrod’s
condition

δ(f ^1 g) = δf ^1 g ± f ^1 δg ± f ^ g ± g ^ f. (6.1)

What is more amazing, ^1 also has the following property:

(f ^ g) ^1 h = f ^ (g ^1 h)± (f ^1 h) ^ g,

which means that · · · ^1 h is a derivation. This is an analogue of Hirsch’s formula in the cochain
complex of a topological space.



48 Tornike Kadeishvili, A∞-Algebra Structure in Cohomology and its Applications

Besides, although the ^1 is not associative, it is possible to show that it satisfies the so called
pre-Jacobi identity

f ^1 (g ^1 h)− (f ^1 g) ^1 h = f ^1 (h ^1 g)− (f ^1 h) ^1 g

which guarantees that the commutator

[f, g] = f ^1 g − g ^1 f

satisfies the Jacobi identity. Besides, the condition (6.1) implies that [ , ] : Cm,s(A,A)⊗Cn,t(A,A)→
Cm+n−1,s+t(A,A) is a chain map, and this implies that (C∗,∗(A,A), δ, [ , ]) is a dg Lie algebra.

By the way, the Hochschild differential δ can be expressed as

δf = f ^1 µ+ µ ^1 f = [f, µ]

where µ : A⊗A→ A is the produduct operation of A.

6.1.3 Higher operations in the Hochschild complex

In order to perturb ^1-twisting cohains (i.e., minimal A∞ algebra structures, as we’ll see below)
we need a kind of analog of the Berikishvilis equivalence of Browns twisting cochains, but now for
this nonassociative ^1 case. Unfortunately for this only Gerstenhaber’s ◦ =^1 is not enough, so
in [20] we have introduced higher order multioperations, the ^1 products f ^1 (g1, . . . , gi) of one
Hochschild cohain f and a collection of Hochschild cochains g1, . . . , gi. Now these operations are called
Getzler–Kadeishvili brace operations and are denoted as f{g1, . . . , gi}. Here is the definition:

f ^1 (g1, . . . , gi)(a1 ⊗ · · · ⊗ an+n1+···+ni−i)

=
∑

k1,...,ki

f(a1 ⊗ · · · ⊗ ak1 ⊗ g1(ak1+1 ⊗ · · · ⊗ ak1+n1
)⊗ · · · ⊗ ak2 ⊗ g2(ak2+1 ⊗ · · · ⊗ ak2+n2

)

⊗ ak2+n2+1 ⊗ · · · ⊗ aki ⊗ gi(aki+1 ⊗ · · · ⊗ aki+ni)⊗ · · · ⊗ an+n1+···+ni−i).

These higher braces f{g1, . . . , gi} form on the Hochschild cochain complex C∗(A,A) a so called
homotopy Gerstenhaber algebra (hGa) structure.

6.1.4 Hochschild cochain complex as a homotopy Gerstenhaber algebra

Let H be a graded algebra. Consider the Hochshild cochain complex of this graded algebra with
coefficients in itself, C∗,∗(, H,H) which is bigraded in this case:

Cn,m(H,H) = Homm(H⊗n, H),

where Homm means homomorphisms of degree m.
This bigraded complex carries a structure of homotopy Gerstenhaber algebra (see [10, 20, 25, 35])

C∗,∗(H,H), δ,^, {E1,k, k = 1, 2, . . . }, which consists of the following structure maps:

(i) The Hochschild differential δ : Cn−1,m(H,H)→ Cn,m(H,H) given by

δf(a1 ⊗ · · · ⊗ an) = a1 · f(a2 ⊗ · · · ⊗ an)

+
∑
k

±f(a1 ⊗ · · · ⊗ ak−1 ⊗ ak · ak+1 ⊗ · · · ⊗ an)± f(a1 ⊗ · · · ⊗ an−1) · an;

(ii) The ^ product defined by

f ^ g(a1 ⊗ · · · ⊗ an+m) = f(a1 ⊗ · · · ⊗ an) · g(an+1 ⊗ · · · ⊗ an+m).
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(iii) The brace operations f{g1, . . . , gi} from [20], which we write here as

f{g1, . . . , gi} = E1,i(f ; g1, . . . , gi),

E1,i : Cn,m ⊗ Cn1,m1 ⊗ · · · ⊗ Cni,mi → Cn+
∑
nt−i,m+

∑
mt ,

given by

E1,i(f ; g1, . . . , gi)(a1 ⊗ · · · ⊗ an+n1+···+ni−i)

=
∑

k1,...,ki

±f
(
a1 ⊗ · · · ⊗ ak1 ⊗ g1(ak1+1 ⊗ · · · ⊗ ak1+n1

)⊗ · · · ⊗ ak2 ⊗ g2(ak2+1 ⊗ · · · ⊗ ak2+n2
)

⊗ ak2+n2+1 ⊗ · · · ⊗ aki ⊗ gi(aki+1 ⊗ · · · ⊗ aki+ni)⊗ · · · ⊗ an+n1+···+ni−i

)
.

The first brace operation E1,1 has the properties of Steenrod’s ^1 product, so we use the
notation E1,1(f, g) = f ^1 g. In fact this is Gerstenhaber’s f ◦ g product [8, 9].

The name Homotopy G-algebra is motivated by the fact that this structure induces on homology
H(A) the structure of Gerstenhaber algebra (G-algebra).

The sequence {E1,k} defines a twisting cochain

E : BC∗,∗(H,H)⊗BC∗,∗(H,H)→ C∗,∗(H,H),

and, consequently, defines a strictly associative product on the bar construction BC∗,∗(H,H)

µE : BC∗,∗(H,H)⊗BC∗,∗(H,H)→ BC∗,∗(H,H)

which turns it into a DG-bialgebra.

6.2 Description of minimal A∞-algebra structure as a twisting cochain
in Hochschild complex

Here we present the connection of the notion of minimal A∞-algebra with Hochschild cochain com-
plexes, studied in [20], see also [25].

6.2.1 Minimal A∞ structure as a Hochschild twisting cochain

Now let (
H, {m1 = 0,m2,m3, . . . ,mn, . . . }

)
be a minimal A∞-algebra. So (H,m2) is an associative graded algebra with multiplication a · b =
m2(a⊗ b) and we can consider the Hochschild cochain complex C∗,∗(H,H).

Each operation mi can be considered as a Hochschild cochain mi ∈ Ci,2−i(H,H). Let m =
m3 +m4 + · · · ∈ C∗,2−∗(H,H). Stasheff’s defining condition of A∞-algebra (5.1)

n−1∑
k=0

n−k∑
j=1

mn−j+1

(
a1 ⊗ · · · ⊗ ak ⊗mj(ak+1 ⊗ · · · ⊗ ak+j)⊗ · · · ⊗ an

)
= 0.

in our case looks like this:

m2

(
a1 ⊗mn−1(a2 ⊗ · · · ⊗ an)

)
+m2

(
mn−1(a1 ⊗ · · · ⊗ an−1)⊗ an

)
+
∑
k

mn−1

(
a1 ⊗ · · · ⊗ ak ⊗m2(ak+1 ⊗ ak+2)⊗ ak+3 ⊗ · · · ⊗ an

)
=

n−1∑
k=0

n−k∑
j=3

mn−j+1

(
a1 ⊗ · · · ⊗ ak ⊗mj(ak+1 ⊗ · · · ⊗ ak+j)⊗ · · · ⊗ an

)
.
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This can be rewritten as
δmn =

∑
j=3,...,n−2

mn−j+1 ^1 mj .

And this means exactly that δm = m^1 m for m = m3 +m4 + · · · , mi ∈ Ci,2−i(H,H).
So a minimal A∞-algebra structure on H is, in fact, a twisting cochain

m = m3 +m4 + · · · ∈ C∗,2−∗(H,H)

in the Hochschild complex with respect to the (nonassociative) ^1 product.

6.2.2 Perturbations of minimal A∞ algebras

Now let (H, {mi} be a minimal A∞-algebra, so (H,m2) is an associative graded algebra with multi-
plication a · b = m2(a⊗ b).

As it was mentioned in section 6.2.1, each operation mi can be considered as a Hochschild cochain
mi ∈ Ci,2−i(H,H). Let m = m3 +m4 + · · · ∈ C∗,2−∗(H,H). The defining condition of an A∞-algebra
(5.1) means exactly δm = m ^1 m. So a minimal A∞-algebra structure on H is, in fact, a twisting
cochain in the Hochschild complex with respect to the ^1 product.

There is the notion of equivalence of such twisting cochains: m ∼ m′ if there exists p = p2,−1 +
p3,−2 + · · ·+ pi,1−i + · · · , pi,1−i ∈ Ci,1−i(H,H) such that

m−m′ = δp+ p ^ p+ p ^1 m+m′ ^1 p+ E1,2(m′; p, p) + E1,3(m′; p, p, p) + · · · . (6.2)

Proposition 6.1. Twisting cochains m,m′ ∈ C∗,2−∗(H,H) are equivalent if and only if (H, {mi})
and (H ′, {m′i}) are isomorphic A∞-algebras.

Proof. Indeed,
{pi} : (H, {mi})→ (H, {m′i})

with p1 = id, pi = pi,1−i is the needed isomorphism: the condition (6.2) coincides with the defining
condition (5.2) of a morphism of A∞-algebras and the Proposition 5.2 implies that this morphism is
an isomorphism.

This gives the possibility of perturbing twisting cochains without changing their equivalence class:

Proposition 6.2. Let m be a twisting cochain (i.e., a minimal A∞-algebra structure on H) and let
p ∈ Cn,1−n(H,H) be an arbitrary cochain. Then there exists a twisting cochain m, equivalent to m,
such that mi = mi for i ≤ n and mn+1 = mn+1 + δp.

Proof. The twisting cochain m can be solved inductively from the equation (6.2).

Theorem 6.1. Suppose for a graded algebra H that its Hochschild cohomology groups are trivial,
Hochn,2−n(H,H) = 0 for n ≥ 3. Then each m ∼ 0, that is each minimal A∞-algebra structure
on H is degenerate, i.e., (H, {mi}) is isomorphic to a (strictly associative) A∞ algebra (H, {m1 =
0,m2,m3 = 0, . . . }).
Proof. From the equality δm = m ^1 m in dimension 4 we obtain δm3 = 0, that is, m3 is a cocycle.
Since Hoch3,−1(H,H) = 0 there exists p2,−1 such that m3 = δp2,−1. Perturbing our twisting cochain
m by p2,−1 we we obtain a new twisting cochain m = m3 +m4 + · · · equivalent to m and with m3 = 0.
Now the component m4 becomes a cocycle, which can be killed using Hoch4,−2(H,H) = 0, etc.

6.2.3 Minimal C∞-algebra structure and Harrison cohomology

Suppose now (H,µ) is a commutative graded algebra. The Harrison cochain complex C∗(H,H)
is defined as a subcomplex of the Hochschild complex consisting of cochains which disappear on
shuffles. If (H, {mi}) is a C∞-algebra then the twisting element m = m3 +m4 · · · belongs to Harrison
subcomplex C∗(H,H) ⊂ C∗(H,H) and we have the

Theorem 6.2. Suppose for a graded commutative algebra H Harrison cohomology

Harrn,2−n(H,H) = 0 for n ≥ 3.

Then each m ∼ 0, that is each minimal C∞-algebra structure on H is degenerate.
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7 Minimality theorem, A∞-algebra structure in homology

7.1 A∞-algebra structure in homology

Let (A, d, µ) be a dg algebra and (H(A), µ∗) be its homology algebra.
Although the dg algebras (A, d, µ) and (H(A), d = 0, µ∗) have same homology algebras, the ho-

mology algebra H(A) carries less information that the dg algebra A.
Generally, there does not exist a map of dg algebras H(A) → A which induces an isomorphism

of homology algebras. Of course, stepping from A to the smaller object H(A) one looses part of the
information. To compensate this loss, it is natural to enrich the algebraic structure on the smaller
object H(A). The classical examples of such enrichments are Steenrod squares, Massey products, . . .

7.1.1 Minimality theorem

Below we present one sort of such additional algebraic structure, namely A∞-algebra structure on the
cohomology algebra, the so called minimality theorem.

It was mentioned above (5) Stasheff’s A∞-algebras are sort of Strong Homotopy Associative Al-
gebras, the operation m3 is a homotopy which measures the nonassociativity of the product m2. So
its existence on homology the H(A), which is strictly associative looks a bit strange, but although
the product on H(A) is associative, there appears a structure of a (generally nondegenerate) minimal
A∞-algebra, which can be considered as an A∞ deformation of (H(A), µ∗), [25]. Namely, in [15, 16]
the following minimalty theorem was proved:

Theorem 7.1. Suppose that for a dg algebra (A, d, µ) all homology modules Hi(A) are free.

(a) Then there exist a structure of minimal A∞-algebra on H(A)(
H(A), {m1 = 0,m2 = µ∗,m3, . . . , mi}

)
and a weak equivalence of A∞-algebras

{fi} : (H(A), {mi})→ (A, {d, µ, 0, 0, . . . })

such that m1 = 0, m2 = µ∗, f∗1 = idH(A).

(b) Furthermore, for a dga map g : A → A′ there exists a morphism of A∞-algebras {gi} :
(H(A), {mi})→ (H(A′), {m′i}) with g1 = g∗ and such that the diagram

(H(A), {mi})
{gi} //

{fi}
��

(H(A′), {m′i})

{f ′i}
��

A
g

// A′

commutes up to homotopy in the category of A∞ algebras.

(c) Such a structure is unique up to isomorphism in the category of A∞-algebras: if (H(A), {mi})
and (H(A), {m′i}) are two minimal A∞-algebra structures on H(A) which satisfy the conditions
from (a) then there exists an isomorphism of A∞-algebras {gi} : (H(A), {mi})→ (H(A), {m′i})
with g1 = id.

Proof. (a). We are going to construct the components fi, mi inductively satisfying the defining
condition of an A∞-morphism

dfn(a1 ⊗ · · · ⊗ an) = f1mn(a1 ⊗ · · · ⊗ an)

+

n−1∑
j=2

n−j∑
k=0

fn−j+1(a1 ⊗ · · · ⊗ ak ⊗mj(ak+1 ⊗ · · · ⊗ ak+j)⊗ · · · ⊗ an)

+

n−1∑
k=1

fk(a1 ⊗ · · · ⊗ ak) · fn−k(ak+1 ⊗ · · · ⊗ an). (7.1)
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Let us start with a cycle-choosing homomorphism f1 : H(A) → A, that is f1(a) ∈ a ∈ H(A)
which can be constructed using the freeness of the modules Hi(A). This map is not multiplicative but
f1(a1·a2)−f1(a1)·f(a2) ∼ 0 ∈ A. So there exists f2 : H(A)⊗H(A)→ A s.t. f1(a1·a2)−f1(a1)·f(a2) =
df2(a1⊗2), and this, assuming m2(a1 ⊗ a2) = a1 · a2, is exactly the condition (7.1) for n = 2.

Let us denote

U3(a1 ⊗ a2 ⊗ a3) = f1(a1) · f2(a2 ⊗ a3) + f2(a1 · a2 ⊗ a3) + f2(a1 ⊗ a2 · a3) + f2(a1 ⊗ a2) · f1(a3).

Note that the main condition (7.1) for n = 3 looks as follows

df3(a1 ⊗ a2 ⊗ a3) = f1m3(a1 ⊗ a2 ⊗ a3)− U3(a1 ⊗ a2 ⊗ a3).

Direct calculation shows that dU3(a1 ⊗ a2 ⊗ a3) = 0, so U3(a1 ⊗ a2 ⊗ a3) is a cycle. Let us define
m3(a⊗ b⊗ c) ∈ H(A) as the homology class of this cycle

m3(a⊗ b⊗ c) = {U3(a⊗ b⊗ c)}
= f1(a1) · f2(a2 ⊗ a3) + f2(a1 · a2 ⊗ a3) + f2(a1 ⊗ a2 · a3) + f2(a1 ⊗ a2) · f1(a3).

Then, since f1 is a cycle choosing homomorphism, f1m3(a1⊗a2⊗a3)−U3(a1⊗a2⊗a3) is homological
to zero. Thus, again using the freeness of Hi(A), it is possible to construct a homomorphism f3 :
H(A)⊗H(A)⊗H(A)→ A such that

df3(a1 ⊗ a2 ⊗ a3) = f1m3(a1 ⊗ a2 ⊗ a3)− U3(a1 ⊗ a2 ⊗ a3),

and this is exactly the condition (7.1) for n = 3.
Assume now that fi, mi, i ≤ n− 1 are already constructed and they satisfy (7.1).
Let us denote

Un(a1 ⊗ · · · ⊗ an) =

n−1∑
j=2

n−j∑
k=0

fn−j+1(a1 ⊗ · · · ⊗ ak ⊗mj(ak+1 ⊗ · · · ⊗ ak+j)⊗ · · · ⊗ an)

+

n−1∑
k=1

fk(a1 ⊗ · · · ⊗ ak) · fn−k(ak+1 ⊗ · · · ⊗ an).

Then the defining condition (7.1) can be rewritten as

dfn(a1 ⊗ · · · ⊗ an) = f1mn(a1 ⊗ · · · ⊗ an) + Un(a1 ⊗ · · · ⊗ an). (7.2)

Direct calculation shows that dUn = 0, so we define mn(a1⊗· · ·⊗an) as the homology class of the cycle
Un(a1 ⊗ · · · ⊗ an). Then using the freeness of modules the Hi(A) one can construct a homomorphism
fn : H∗(A)⊗ · · · ⊗H(A)→ A satisfying (7.2), and this completes the proof of (a).

(b). The morphism of A∞-algebras (H(A), {mi})
{fi} // A

g // A′ induces a twisting cochain

φ : B(H(A), {mi})→ A.
Furthermore, since

(H(A′), {m′i})
{f ′i} // A′

is a weak equivalence of A∞-algebras, by the lifting theorem (5.4) φ can be lifted to the A∞-
twisting cochain ψ : B(H(A), {mi}) → (H(A′), {m′i}) which in fact represents an A∞-morphism
{gi} : (H(A), {mi}) → (H(A′), {m′i}), such that {f ′i} ◦ ψ ∼ φ. This equivalence means that A∞-
morphisms {f ′i} ◦ {gi} and g ◦ {gi} are homotopic. This completes the proof.

(c). Suppose for a dg algebra (A, d, µ) we have two homology A∞-algebras (H(A), {mi}) and
(H(A), {m′i}), i.e., there exist A∞ weak equivalences

{fi} : (H(A), {mi})→ A, {f ′i} : (H(A), {mi})→ A

with (f1)∗ = (f ′1)∗ = idH(A). Then, using the part (b) for d = idA we obtain

{gi} : (H(A), {mi})→ (H(A), {m′i})

with g1 = g∗ = idH(A). So, {gi} is an isomorphism of A∞ algebras by (5.1).
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Corollary 7.1. The mapping of differential coalgebras

B({fi}) : B̃(H(A), {mi})→ B(A)

induces an isomorphism in homology.

7.1.2 Connection with Massey products

The first new operation m3(a1 ⊗ a2 ⊗ a3) ∈ H(A) was defined as the homology class of the cycle

U3(a1 ⊗ a2 ⊗ a3) = f1(a1) · f2(a2 ⊗ a3) + f2(a1 · a2 ⊗ a3) + f2(a1 ⊗ a2 · a3) + f2(a1 ⊗ a2) · f1(a3).

This description immediately induces the connection of m3 with the Massey product: If a, b, c ∈
H(A) is a Massey triple, i.e., if a1 · a2 = a2 · a3 = 0, then

U3(a1 ⊗ a2 ⊗ a3) = f1(a1) · f2(a2 ⊗ a3) + f2(a1 ⊗ b2) · f1(a3)

and this is exactly the combination which defines the Massey product 〈a1, a2, a3〉, thus m3(a1 ⊗
a2 ⊗ a3) ∈ 〈a1, a2, a3〉. This gives examples of dg algebras with essentially nontrivial homology A∞-
algebras.

7.1.3 Special cases

Taking (A, d, µ) = C∗(X), the cochain complex of a topological space X, the theorem defines on the
cohomology algebra H∗(X) the structure of a minimal A∞-algebra (H∗(X), {mi}), which carries more
information about X than just the graded algebra structure. In particular, we shall show later that
this cohomology A∞-algebra (H∗(X), {mi}) determines the cohomology modules of the loop space
ΩX whereas the bare the cohomology algebra (H∗(X),m2) does not.

Furthermore, taking (A, d, µ) = C∗(G), the chain complex of a topological group, the theorem
defines on the Pontriagin ring H∗(G) the structure of a minimal A∞-algebra (H∗(G), {mi}) which
will carry more information about G than just the ring structure. In particular, we shall show later
that this homology A∞-algebra (H∗(G), {mi}) determines homology modules of classifying space BG
whereas the bare Pontriagin ring (H∗(G),m2) does not.

7.1.4 Minimal A∞-algebra structure on the homology of an A∞-algebra

The Minimality Theorem is true also when, instead of a dg algebra (A, d, µ) we take an arbitrary
A(∞)-algebra (M, {mi}).

In this case, minimal A∞-algebra structure appears on the homology H(M) of the dg module
(M,m1 : M →M), see [17].

This structure had applications in string theory, see for example [1].

8 Applications of the minimality theorem

8.1 Application: cohomology A∞ algebra of a space and
cohomology modules of loop space

Taking A = C∗(X), the cochain dg algebra of a 1-connected space X, we obtain an A∞-algebra
structure (H∗(X), {mi}) on the cohomology algebra H∗(X).

The cohomology algebra equipped with this additional structure carries more information than
just the cohomology algebra. Some applications of this structure are given in [16, 22]. For example
the cohomology A∞-algebra (H∗(X), {mi}) determines the cohomology of the loop space H∗(ΩX)
whereas the bare algebra (H∗(X),m2) does not:

Theorem 8.1. H(B(H∗(X), {mi})) = H∗(ΩX).
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Firstly, according to the minimality theorem the homology of the dg algebra (C∗(X), d,^) carries
a structure of minimal A∞-algebra (H∗(X), {mi}), such that there is and a weak equivalence of
A∞-algebras

{fi} : (H∗(X), {mi})→
(
C∗(X), {m1 = d,m2 =^,m3 = 0, . . . }

)
,

which induces weak equivalences of their bar constructions and an isomorphism of graded modules

H
(
B(H∗(X), {mi})

)
≈ H(BC∗(X)) ≈ H∗(ΩX).

Thus the object (H∗(X), {mi}), which is called the cohomology A∞-algebra of X, determines the
cohomology modules of the loop space H∗(ΩX). But not the cohomology algebra H∗(ΩX).

8.2 Application: homology modules of the classifying space
of a topological group

Taking A = C∗(G), the chain dg algebra of a topological group G, we obtain an A∞-algebra structure
(H∗(G), {mi}) on the Pontriagin algebraH∗(G). The homology A∞-algebra (H∗(G), {mi}) determines
the homology of the classifying space H∗(BG) when just the Pontryagin algebra (H∗(G),m2) does not:

Theorem 8.2. H(B(H∗(G), {mi})) = H∗(BG).

8.3 Application: A∞-model of a fibre bundle

The minimality theorem (7.1) and the theorem (5.4) about lifting of twisting cochains allow to con-
struct effective models of fibre bundles. Actually this model and higher operations {mi} and {pi}
were constructed in [15]. Later we have recognized that they form Stasheff’s A∞-structures and the
model in these terms was presented in [16]. A similar model was also presented in [29].

Topological level. Let ξ = (X, p,B,G) be a principal G-fibration. Let F be a G-space. Then the
action G timesF → F determines the associated fibre bundle ξ(F ) = (E, p,B, F,G) with fiber F .
Thus ξ and the action G timesF → F on the topological level determine E.

Chain level. Let K = C∗(B), A = C∗(G), P = C∗(F ). The classical result of E. Brown [5] states that
the principal fibration ξ determines a twisting cochain φ : K = C∗(B)→ A = C∗(G), and the action on
the chain level C∗(G)⊗C∗(F )→ C∗(F ) defines the twisted tensor product K⊗φP = C∗(B)⊗φC∗(F )
which gives the homology modules of the total space H∗(E). Thus ξ and the action on the chain level
C∗(G)⊗ C∗(F )→ C∗(F ) determine H∗(E).

The twisting cochain φ is not uniquely determined and it can be perturbed by the above equivalence
relations for computational reasons.

Homology level. Nodar Berikashvili stated the problem to lift the previous “chain level” model of
associated fibration to “homology level”, i.e., to construct a “twisted differential” on C∗(B)⊗H∗(F ).
Investigation had shown that the principal fibration ξ and the action of of Pontryagin ring H∗(G) on
H∗(F ), that is the pairing H∗(G)⊗H∗(F )→ H∗(F ) do not determine H∗(E). But by the minimality
theorem it appeared that H∗(G) carries not only the Pontryagin product H∗(G) ⊗H∗(G) → H∗(G)
but also richer algebraic structure, namely the structure of a minimal A∞-algebra (H∗(G), {mi}).

Furthermore, the action G timesF → F induces not only the pairing H∗(G) ⊗ H∗(F ) → H∗(F )
but, by the modular analog of the Minimality Theorem [16] also the structure of minimal A∞-module
(H∗(F ), {pi}),

pi : H∗(G)⊗ · · · ((i− 1) times) · · · ⊗H∗(G)⊗H∗(F )→ H∗(F ),

and all these operations allow to define the correct differential on C∗(B) ⊗ H∗(F ): there is a weak
equivalence, homology isomorphism

C∗(B)⊗ψ H∗(F ) = K ⊗ψ H(P )→ K ⊗φ P = C∗(B)⊗φ C∗(F ) ∼ C∗(E).
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9 C∞-algebra structure in the homology of a commutative
dg algebra, applications in Rational Homotopy Theory

There is a commutative version of the above Minimality Theorem, see [21,22,27]:

Theorem 9.1. Suppose that for a commutative dg algebra A all homology R-modules Hi(A) are free.
Then there exist: a structure of minimal C∞-algebra (H(A), {mi}) on H(A) and a weak equivalence

of C∞-algebras
{fi} : (H(A), {mi})→ (A, {d, µ, 0, 0, . . . })

such that m1 = 0, m2 = µ∗, f∗1 = idH(A).
Furthermore, for a cdga map f : A→ A′ there exists a morphism of C∞-algebras

{fi} : (H(A){mi})→ (H(A′){m′i})

with f1 = f∗.

Such a structure is unique up to isomorphism in the category of C∞-algebras.
Below we present some applications of this C∞-algebra structure in rational homotopy theory.

9.1 Classification of rational homotopy types

Let X be a 1-connected space. In the case of rational coefficients there exist Sullivan’s commutative
cochain complex A(X) of X. It is well known that the weak equivalence type of a cdg algebra A(X)
determines the rational homotopy type of X: 1-connected X and Y are rationally homotopy equivalent
if and only if A(X) and A(Y ) are weakly equivalent cdg algebras. Indeed, in this case A(X) and A(Y )
have isomorphic minimal models MX ≈MY , and this implies that X and Y are rationally homotopy
equivalent. This is the key geometrical result of Sullivan which we are going to exploit below.

Now we take A = A(X) and apply Theorem 9.1. Then we obtain on H(A) = H∗(X,Q) a structure
of minimal C∞ algebra (H∗(X,Q), {mi}) which we call the rational cohomology C∞-algebra of X.

Generally, an isomorphism of rational cohomology algebras H∗(X,Q) and H∗(Y,Q) does not imply
a homotopy equivalence X ∼ Y , not even rationally. We claim that (H∗(X,Q), {mi}) is a complete
rational homotopy invariant:

Theorem 9.2. 1-connected X and X ′ are rationally homotopy equivalent if and only if

(H∗(X,Q), {mi}) and (H∗(X ′, Q), {m′i})

are isomorphic as C∞-algebras.

Proof. Suppose X ∼ X ′. Then A(X) and A(X ′) are weakly equivalent, that is there exists a cgda
A and weak equivalences A(X) ← A → A(X ′). This implies weak equivalences of the corresponding
homology C∞-algebras

(H∗(X,Q), {mi})← (H∗(A), {mi})→ (H∗(X ′, Q), {m′i}),

which by of minimality are both isomorphisms.
Conversely, suppose

(H∗(X,Q), {mi}) ≈ (H∗(X ′, Q), {m′i}).

Then
AQB(H∗(X,Q), {mi}) ≈ AQB(H∗(X ′, Q), {m′i}).

Denote this cdga as A. Then we have weak equivalences of CGD algebras (see (5.3.5))

A(X)← AΓA(X)← A→ AΓA(X ′)→ A(X ′).

This theorem in fact classifies rational homotopy types with given cohomology algebra H as all
possible minimal C∞-algebra structures on H modulo C∞ isomorphisms.
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Example 9.1. Here we describe an example which we will use to illustrate the results of this and
forthcoming sections.

We consider the following commutative graded algebra. Its underlying graded Q-vector space has
the following generators: a generator e of dimension 0, generators x, y of dimension 2, and a generator
z of dimension 5, so

H∗ =
{
H0 = Qe, 0, H

2 = Qx ⊕Qy, 0, 0, H5 = Qz, 0, 0, . . .
}
,

and the multiplication is trivial by dimensional reasons, with unit e. In fact

H∗ = H∗(S2 ∨ S2 ∨ S5, Q).

This example was considered in [12]. It was shown there that there are just two rational homotopy
types with such cohomology algebra.

The same result can be obtained from our classification.
What minimal C∞-algebra structures are possible on H∗?
For dimensional reasons only one nontrivial operation m3 : H2 ⊗H2 ⊗H2 → H5 is possible.
The specific condition of a C∞-algebra, namely the disappearance on shuffles implies that

m3(x, x, x) = 0, m3(y, y, y) = 0, m3(x, y, x) = 0, m3(y, x, y) = 0

and
m3(x, x, y) = m3(y, x, x), m3(x, y, y) = m3(y, y, x).

Thus each C∞-algebra structure on H∗ is characterized by a pair of rational numbers p, q and

m3(x, x, y) = pz, m3(x, y, y) = qz.

So let us write an arbitrary minimal C∞-algebra structure on H∗ as a column vector

(
p
q

)
.

Now let us look at the structure of an isomorphism of C∞-algebras

{fi} : (H∗,m3)→ (H∗,m′3).

Again for dimensional reasons just one component f1 : H∗ → H∗ is possible, which in its turn consists
of two isomorphisms

f2
1 : H2 = Qx ⊕Qy → H2 = Qx ⊕Qy, f5

1 : H5 = Qz → H5 = Qz.

The first one is represented by a nondegenerate matrix A =

(
a c
b d

)
,

f2
1 (x) = ax⊕ by, f2

1 (y) = cx⊕ dy,

and the second one by a nonzero rational number r, f5
1 (z) = rz.

A calculation shows that the condition f5
1m3 = m′3(f2

1 ⊗ f2
1 ⊗ f2

1 ), to which the defining condition
of an A∞-algebra morphism (5.2)degenerates looks as follows

r

(
p
q

)
= detA

(
a b
c d

)(
p′

q′

)
.

This condition shows that two minimal C∞-algebra structures m3 =

(
p
q

)
and m′3 =

(
p′

q′

)
are isomor-

phic if and only if they are related by a nondegenerate linear transformation.
Thus there exist just two isomorphism classes of minimal C∞-algebras on H∗: the trivial one

(H∗,m3 = 0) and the nontrivial one (H∗,m3 6= 0). So we have just two rational homotopy types
whose rational cohomology is H∗. We denote them by X and Y , respectively and analyze them in
the next sections.

Below we give some applications of the cohomology C∞-algebra in various problems of rational
homotopy theory.
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9.2 Formality

Among rational homotopy types with given cohomology algebra, there is one called formal which is a
“formal consequence of its cohomology algebra” (Sullivan). Explicitly, this is the type whose minimal
model MX is isomorphic to the minimal model of the cohomology H∗(X,Q).

Our C∞ model implies the following criterion of formality:

Theorem 9.3. X is formal if and only if its cohomology C∞-algebra is degenerate, i.e., it is C∞
isomorphic to one with m≥3 = 0.

Below we deduce some known results about formality using this criterion.

1. A commutative graded 1-connected algebra H is called intrinsically formal if there is only one
homotopy type with this cohomology algebra H, of course the formal one.

The above Theorem 6.2 immediately implies the following sufficient condition for formality due to
Tanre [33]:

Theorem 9.4. If for a 1-connected graded Q-algebra H one has

Harrk,k−2(H,H) = 0, k = 3, 4, . . . ,

then H is intrinsically formal, that is there exists only one rational homotopy type with H∗(X,Q) ≈ H.

2. The following theorem of Halperin and Stasheff from [12] is an immediate result of our criterion:

Theorem 9.5. A commutative graded Q-algebra of type

H =
{
H0 = Q, 0, 0, . . . , 0, Hn, Hn+1, . . . ,H3n−2, 0, 0, . . .

}
is intrinsically formal

Proof. Since degmi = 2− i there is no room for operations mi>2, indeed the shortest range is

m3 : Hn ⊗Hn ⊗Hn → H3n−1 = 0.

3. Theorem 9.3 easily implies the

Theorem 9.6. Any 1-connected commutative graded algebra H with H2k = 0 for all k is intrinsically
formal.

Proof. Any A∞-operation mi has degree 2− i, thus

mi : H2k1+1 ⊗ · · · ⊗H2ki+1 → H2(k1+···+ki+1) = 0.

Thus any C∞-operation is trivial too.

This implies a result of Baues: any space whose even-dimensional cohomologies are trivial has the
rational homotopy type of a wedge of spheres. Indeed, such an algebra is realized by wedge of spheres
and because of intrinsical formality this is the only homotopy type.

Example 9.2. Example. The algebra H∗ from the example of the previous section is not intrinsically
formal since there are two homotopy types, X and Y , with H∗(X,Q) = H∗ = H∗(Y ). The space X
is formal (and actually X = S2 ∨ S2 ∨ S5), since its cohomology C∞-algebra (H∗,m3 = 0) is trivial.
But the space Y is not: its cohomology C∞-algebra (H∗,m3 6= 0) is not degenerate.

We remark here that the formal type is represented by X = S2∨S2∨S5 and it is possible to show
that the nonformal one is represented by Y = S2 ∨ S2

⋃
f :S4→S2∨S2

e5, where the attaching map f is a

nontrivial element from π4(S2 ∨ S2)⊗Q.
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9.3 Rational homotopy groups

Since the cohomology C∞-algebra (H∗(X,Q), {mi}) determines the rational homotopy type it must
determine the rational homotopy groups πi(X)⊗Q too. We present a chain complex whose homology
is πi(X)⊗Q. Moreover, the Lie algebra structure is determined as well.

For a cohomology C∞-algebra (H∗(X,Q), {mi}) the bar construction B(H∗(X,Q), {mi}) is a dg
bialgebra, see (5.3.3). Acting on this bialgebra by the functor Q of indecomposables we obtain a dg
Lie coalgebra.

On the other hand the rational homotopy groups π∗(ΩX) ⊗ Q form a graded Lie algebra with
respect to Whiethead product. Thus its dual cohomotopy groups π∗(ΩX,Q) = (π∗(ΩX)⊗Q)∗ form
a graded Lie coalgebra.

Theorem 9.7. Homology of a dg Lie coalgebra QB(H∗(X,Q), {mi}) is isomorphic to the cohomotopy
Lie coalgebra π∗(ΩX,Q).

Proof. The theorem follows from the sequence of graded Lie coalgebra isomorphisms:

π∗(ΩX,Q) ≈ (π∗(ΩX,Q))∗ ≈ (PH∗(Ωx,Q)∗ ≈ QH∗(ΩX,Q)

≈ QH(B(A(X)) ≈ QH(B̃(H∗(X,Q), {mi}) ≈ H
(
QB̃(H∗(X,Q), {mi})

)
.

Example 9.3. For the algebra H∗ from the previous examples the complex QB(H∗) in low dimensions
looks as

0 // Qx ⊕Qy
0 // Qx⊗x ⊕Qx⊗y ⊕Qy⊗y

0 // Qx⊗x⊗y ⊕Qx⊗y⊗y
d=m3 // Qz ⊕ · · · .

The differential d = m3 is trivial for the formal space X and is nontrivial for Y . Thus for both rational
homotopy types we have

π2 = H1(QB(H∗)) = 2Q, π3 = H2(QB(H∗)) = 3Q,

and

π4(X) = H3(QB(H∗), d = 0) = 2Q,

π4(Y ) = H3(QB(H∗), d 6= 0) = Ker d = Q.

9.4 Realization of homomorphisms

Let G : H∗(X,Q) → H∗(Y,Q) be a homomorphism of cohomology algebras. When this homomor-
phism is realizable as a map of rationalizations g : YQ → XQ, g∗ = G? In the case when G is an
isomorphism this question was considered in [12]. It was considered also in [34]. The following theorem
gives the complete answer:

Theorem 9.8. A homomorphism G is realizable if and only if it is extendable to a C∞-map

{g1 = G, g2, g3, . . . } : (H∗(X,Q), {mi})→ (H∗(Y,Q), {m′i}).

Proof. One direction of this is consequence of the last part of Theorem 9.1.
To show the other direction we use Sullivan’s minimal models MX and MY of A(X) and A(Y ). It

is enough to show that the existence of {gi} implies the existence of cdg algebra map g : MY →MX .
So we have C∞-algebra maps

MX (H∗(X,Q), {mi})
{fi}oo {gi} // (H∗(y,Q), {m′i})

{f ′i} // MY .

Recall the following property of a minimal cdg algebra M : for a weak equivalence of cdg algebras
φ : A → B and a cdg algebra map f : M → B there exists a cdg algebra map F : M → A such
that φF is homotopic to f . Using this property it is easy to show the existence of a cdga map
β : MX → AQB(MX), the right inverse of the standard map α : AQB(MX) → M . Composing this
map with AQB({f ′i})AQB({gi}) we obtain a cdga map

AQB({f ′i})AQB({gi})β : MX →MY .
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This theorem immediately implies the

Corollary 9.1. For formal X and Y each G : H∗(X,Q)→ H∗(Y,Q) is realizable.

Proof. In this case {G, 0, 0, . . . } is a C∞-extension f G.

Example 9.4. Consider the homomorphism

G : H∗(X) = H∗(Y )→ H∗(S5)

induced by the standard imbedding g : S5 → X = S2∨S2∨S5. Of course G is realizable as g : S5 → X
but not as S5 → Y . Indeed, for such realizability, according to Theorem 9.8, we need a C∞-algebra
morphism

{gi} : (H∗, {0, 0,m3, 0, . . . })→ (H5(S5, Q), {0, 0, 0, . . . })

with g1 = G. For dimensional reasons all the components g2, g3, . . . all are trivial, so this morphism
has the form {G, 0, 0, . . . }. But this collection is not a morphism of C∞-algebras since the condition
Gm3 = 0, to which the defining condition (5.2) of an A∞-algebra morphism degenerates, is not
satisfied.
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Torwads to Noncommutative Dynamical Systems

Andrey Krutov

Abstract

We review the classical theory of Hamiltonian dynamical systems and discuss their possible
noncommutative analogues.

1 Introduction

This note follows the series of lectures given by the author at the summer school “Algebra, Topology
and Analysis: C∗ and A∞ Algebras” in Georgia. In § 2, we recall the basic facts about symplectic
manifolds and Hamiltonian dynamical systems. In particular, we recall the celebrated Liouville’s
theorem. In § 3, we discuss examples of noncommutative symplectic manifolds, namely, the irreducible
quantum flag manifolds and discuss a possible noncommutative analogue of Hamiltonian dynamical
systems.

2 Hamiltonian dynamical systems

In this section we recall the notion of classical Hamiltonian systems. We refer the reader for more
details to the seminal book [4].

Let M be a smooth n-dimensional manifold. To every vector field X on M we associate the
one-parametric group gtX of diffeomorphisms of M or flow of X for which X is the velocity vector
field:

d

dt

∣∣∣
t=0

gtX(x) = Xx for x ∈M.

The two flows gtX and gsY commute if and only if the commutator of the corresponding vector
fields [X,Y ] is equal to zero.

A dynamical system is a smooth vector field X on a manifold M . In local coordinates x1, . . . , xn,
one can write

X = ξ1(x1, . . . , xn)
∂

∂x1
+ · · ·+ ξn(x1, . . . , xn)

∂

∂xn
and the corresponding dynamical system will have the following form

d

dt
xi = ξi(x1, . . . , xn) for i = 1, . . . , n. (2.1)

The flow of X corresponds to the solutions of (2.1).
A first integral of a dynamical system (M,X) is a (non-constant) smooth function F on M which

is constant along the flow of X.

2.1 Symplectic manifolds

Let M be an even-dimensional manifold. A symplectic structure on M is a closed nondegenerate
differential 2-form ω on M :

dω = 0, ω ∧ · · · ∧ ω︸ ︷︷ ︸
(dimM) times

6= 0.

The pair (M,ω) is called a symplectic manifolds.

For example, consider M = R2n with coordinates pi, qi and let ω =
n∑
i=1

dpi ∧ dqi, then (M,ω) is

a symplectic manifold.
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2.1.1 The cotangent bundle and its symplectic structure

Let N be an n-dimensional manifold. A 1-form on the tangent space TxN at x ∈ N is called a
cotangent vector to N at x. Denote the space of cotangent vectors by T ∗xV . The union of the
cotangent spaces T ∗xM at all x ∈ M is called the cotangent bundle of N . The cotangent bundle has
a natural structure of a vector bundle over M . Hence, T ∗V is a manifold. If q = (q1, . . . , qn) is a choice
of local coordinates on N , then it induces a choice of coordinates p = (p1, . . . , p1) on the fibres of T ∗N .
The cotangent bundle T ∗N has a natural symplectic structure given in the local coordinates by

ω = dp1 ∧ dq1 + · · ·+ dpn ∧ dqn.

2.1.2 Hamiltonian vector fields

Let (M,ω) be a symplectic manifold. To each vector X ∈ TxM at x ∈M we can associate a 1-form ωX
on TxM by the formula

ωX(Y ) := ω(Y,X) for all Y ∈ TxM.

In fact, the linear map X 7→ ωX defines an isomorphism between TxM and T ∗xM . We will denote this
isomorphism by I : T ∗M → TM . The vector field XH := I(dH) is called a Hamiltonian vector field ;
H is called the Hamiltonian function (or just Hamiltonian).

For H ∈ C∞(M), the vector field XH defines the corresponding 1-parameter group of diffeomor-
phisms gtH : M →M such that

d

dt

∣∣∣
t=0

gtH(x) = XH(x).

The group gtH is called the Hamiltonian phase flow with Hamiltonian H. A Hamiltonian phase flow
preserves the symplectic form

(gtH)∗ω = ω.

2.1.3 The Poisson bracket

Let XH and XF be Hamiltonian vector fields. Then there exists a smooth function G ∈ C∞(M) such
that

[XH , XF ] = XG.

The Poisson bracket H,F of smooth functions H and F on M is the derivation of the function F in
the direction of the phase flow with Hamiltonian H.

{H,F}(x) =
d

dt

∣∣∣
t=0

F (gtH(x)).

We have that
[XH , XF ] = X{H,F}

and
{F,H} = dF (XH) = ω(XH , Xf ).

A functions F is a first integral of the phase flow with Hamiltonian H if and only if its Poisson
bracket with H is identically zero.

The Poisson bracket is skewsymmetric,

{F,H} = −{H,F},

and satisfies the Jacobi identity,{
{F,H}, G

}
+
{
{G,F}, H

}
+
{
{H,G}, F

}
.

Therefore, it makes the vector space of smooth function on a manifold M into a Lie algebra. The map
H 7→ XH defines a morphism of the Lie algebra of smooth functions on M (with the Poisson bracket)
to the Lie algebra of vector fields (with the bracket given by the commutator).
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2.2 Liouville’s theorem

Let H be a smooth function on M . Then the corresponding Hamiltonian vector field XH defines
a dynamical system, which is called the Hamiltonian dynamical system with Hamiltonian H.

Two function F1 and F2 on (M,ω) are in involution if {F1, F2} = 0.

Theorem (Liouville). Suppose F1, . . . , Fn are in involution on (M,ω). For f = (f1, . . . , fn) ∈ Rn,
consider a level set of the function (F1, . . . , Fn)

Mf =
{
x ∈M | Fi(x) = fi

}
.

Assume that the functions Fi are independent on Mf , i.e. the 1-forms dFi are linearly independent
at each point of Mf . Then

(1) Mf is a smooth manifold invariant under the phase flow with Hamiltonian H := F1.

(2) If the manifold Mf is compact and connected, then it is diffeomorphic to the n-dimensional
torus.

(3) The Hamiltonian dynamical system with Hamiltonian H can be integrated by quadratures.

3 The noncommutative case

In this section we discuss a possible generalization of the Hamiltonian formalism to the noncommu-
tative case.

3.1 Drinfeld–Jimbo quantum groups

In this section we recall basic material about Drinfeld–Jimbo quantised universal enveloping algebras
(introduced in [7,12]) and their representation theory. We refer the reader to [6,9,13] for more details.

3.1.1 Drinfeld–Jimbo quantised universal enveloping algebras Uq(g)

Let g be a finite-dimensional complex semisimple Lie algebra of rank r. We fix a Cartan subalgebra h
with corresponding root system ∆ ⊆ h∗, where h∗ denotes the linear dual of h. Fix a choice of simple
roots {α1, . . . , αr}. Denote by ( · , · ) the symmetric bilinear form induced on h∗ by the Killing form of
g, normalised so that any shortest simple root αi satisfies (αi, αi) = 2. Let {$1, . . . , $r} denote the
corresponding set of fundamental weights of g. The Cartan matrix A = (aij) of g is the (r× r)-matrix
defined by aij :=

(
α∨i , αj

)
, where α∨i := 2αi/(αi, αi).

Let q ∈ C be such that q is not a root of unity and denote qi := q(αi,αi)/2. The quantised enveloping
algebra Uq(g) is the noncommutative associative algebra generated by the elements Ei, Fi,Ki, andK−1i
for i = 1, . . . , r, subject to the relations

KiEj = q
aij
i EjKi, KiFj = q

−aij
i FjKi, KiKj = KjKi,

KiK
−1
i = K−1i Ki = 1, EiFj − FjEi = δij

Ki −K−1i
qi − q−1i

,

along with the quantum Serre relations

1−aij∑
s=0

(−1)s
[
1− aij
s

]
qi

E
1−aij−s
i EjE

s
i = 0 for i 6= j,

1−aij∑
s=0

(−1)s
[
1− aij
s

]
qi

F
1−aij−s
i FjF

s
i = 0 for i 6= j,
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where we have used the q-binomial coefficients defined as follows

[n]q! := [n]q[n− 1]q · · · [2]q[1]q, where [k]q :=
qk − q−k

q − q−1
,[

n
k

]
q

:=
[n]q!

[k]q![n− k]q!
.

A Hopf algebra structure is defined on Uq(g) by

∆(Ki) = Ki ⊗Ki, ∆(Ei) = Ei ⊗Ki + 1⊗ Ei, ∆(Fi) = Fi ⊗ 1 +K−1i ⊗ Fi,
S(Ei) = −EiK−1i , S(Fi) = −KiFi, S(Ki) = K−1i ,

ε(Ei) = ε(Fi) = 0, ε(Ki) = 1.

Let P be the weight lattice of g, and P+ its set of dominant integral weights. We consider Rep1 Uq(g),
the full sub-category of the category of (left) Uq(g)-modules, whose the objects are finite-dimensional
Uq(g)-modules having a weight decomposition V =

⊕
µ∈P

V (µ). Recall that a vector v ∈ V is called

a weight vector of weight µ ∈ h∗ if Ki . v = q(αi,µ)v for all i = 1, . . . , r. The category Rep1 Uq(g)
is a semisimple tensor category whose simple objects are irreducible modules Vλ with the highest
weight λ ∈ P+. Moreover, the character of Vλ is given by the classical Weyl character formula for the
irreducible g-module V̂λ with highest weight λ. In fact, the category Rep1 Uq(g) is equivalent to the
category Of of finite-dimensional representations of g. We refer to [8, § 5.8] and [13, § 7] for further
details.

3.1.2 Quantum coordinate algebras

In this subsection we recall some necessary material about quantised coordinate algebras, see [13, § 6
and § 7] and [17] for further details. Let V be a finite-dimensional left Uq(g)-module, v ∈ V , and
f ∈ V ∗, the C-linear dual of V , endowed with its right Uq(g)-module structure. An important point
to note is that, with respect to the equivalence of left and right Uq(g)-modules given by the invertible
antipode, the left module corresponding to V ∗µ is isomorphic to V−w0(µ), where w0 denotes the longest
element in the Weyl group of g.

Consider the function cVf,v : Uq(g)→ C defined by

cVf,v(X) := f(X . v).

The coordinate ring of V is the subspace

C(V ) := SpanC
{
cVf,v | v ∈ V, f ∈ V ∗

}
⊆ Uq(g)◦,

where Uq(g)◦ denote the Hopf dual of Uq(g). A Uq(g)-bimodule structure on C(V ) is given by

(Y . cVf,v / Z)(X) := f((ZXY ) . v) = cVf/Z,Y .v(X).

It is easily checked that C(V ) ⊆ Uq(g)◦, and moreover that a Hopf subalgebra of Uq(g)◦ is given by

Oq(G) :=
⊕
µ∈P+

C(Vµ).

We call Oq(G) the quantum coordinate algebra of G, where G is the compact, connected, simply-
connected, simple Lie group having g as its complexified Lie algebra.

3.2 The quantum flag manifolds

Let {αi}i∈S be a subset of simple roots. In what follows, by abuse of notation, we denote by S not
only an index subset but also the corresponding subset of simple roots {αi}i∈S . Consider the Hopf
subalgebra

Uq(lS) :=
〈
Ki, Ej , Fj | i = 1, . . . , r; j ∈ S

〉
.
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By construction Oq(G) is a Uq(g)-module, hence, it is a Uq(lS)-module too.
The quantum flag manifold associated to S is the space of Uq(lS)-invariants in Oq(G), and is

denoted by
Oq(G/LS) := Oq(G)Uq(lS),

where LS is the Levi subgroup of G corresponding to S.
Let S be a subset of simple roots of g. Following the classical case (see, for example, [5]) we say

that the quantum flag manifold associated to S is of irreducible type if g/lS is a direct sum of two
dual irreducible lS-modules.

3.2.1 The Heckenberger–Kolb calculus

A differential calculus (Ω• '
⊕

k∈Z≥0

Ωk,d) is a differential graded algebra (dg-algebra) which is gener-

ated in degree 0 as a dg-algebra, that is to say, it is generated as an algebra by the elements a,db for
a, b ∈ Ω0. We call an element ω ∈ Ω• a form, and if ω ∈ Ωk for some k ∈ N, then ω is said to be
homogeneous of degree |ω| := k. For a given algebra B, a differential calculus over B is a differential
calculus such that Ω0 = B.

Let A
BMod0 be the category whose objects are left A-comodules ∆L : F → A ⊗ F , endowed with

a B-bimodule structure, such that

1. ∆L(bf) = ∆L(b)∆L(f) for all f ∈ F , b ∈ B,

2. FB+ = B+F ,

and whose morphisms are left A-comodule, B-bimodule, maps. In the case when A = Oq(G) and B =

Oq(G/LS), an object in the category
Oq(G)

Oq(G/LS)Mod0 corresponds to a noncommutative generalization

of a module of smooth sections of a homogeneous vector bundle over G/LS .
As it was shown in [10, Theorem 7.2] and [11, Propositions 3.6 and 3.7] for any irreducible quan-

tum flag manifold Oq(G/LS), there exist exactly two non-isomorphic, left Oq(G)-covariant, finite-
dimensional differential calculi

Ω(•,0)
q (G/LS), Ω(0,•)

q (G/LS) ∈ Oq(G)

Oq(G/LS)Mod0,

of the classical dimension.
In [15], Matassa showed (see also [16]) that for the irreducible quantum flag manifold Oq(G/LS)

there exists a 2-form
ω ∈ (Ω•q(G/LS))co(Oq(G))

such that it is closed
dω = 0

and nondegenerate
ω ∧ · · · ∧ ω︸ ︷︷ ︸

dim(G/LS) times

6= 0,

where dim(G/LS) is the classical dimension of G/LS .
Therefore, we can consider ω as a noncommutative symplectic structure on Oq(G/LS).

3.2.2 Yetter–Drinfeld modules

A braiding on a monoidal category C is a natural isomorphism σ between the functors − ⊗ − and
− ⊗opp − such that the hexagonal diagrams commute, see [8, § 8.1] for details. A braided monoidal
category is a pair consisting of a monoidal category and a braiding.

An important example of a braided monoidal category is the category of (right) Yetter–Drinfeld
modules V over a Hopf algebra H, which are those right H-modules V , with an action /, and a right
H-comodule structure such that

v(0) / h(1) ⊗ v(1)h(2) = (v / h(2))(0) ⊗ h(1)(v / h(2))(1), h ∈ H, v ∈ V.
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We denote the category of Yetter–Drinfeld modules, endowed with its obvious monoidal structure, by
YDHH . A braiding for the category is defined by

σ : V ⊗W →W ⊗ V, v ⊗ w 7→ w(0) ⊗ v / w(1) for v ∈ V, w ∈W.

Note that for any V ∈ YDHH , the tensor algebra T (V ) is a braided Hopf algebra in YDHH with

∆(v) := v ⊗ 1 + 1⊗ v, S(v) := −v, ε(v) := 0 for v ∈ V.

3.3 Nichols algebras

For a detailed introduction on Nichols algebras we refer to the surveys [1] and [2]. Let Bn denote the
braid group on n strands, which can be described as the group generated by n−1 elements β1, . . . , βn−1
subject to the relations

βiβi+1βi = βi+1βiβi+1, 1 ≤ i ≤ n− 2,

βiβj = βjβi, 1 ≤ i, j ≤ n− 2, |i− j| ≥ 2.

For any V ∈ YDHH which is finite-dimensional as a vector space, we obtain a representation of the
braid group on n strands

ρn : Bn → GL(V ⊗n),

given by

ρn(βi) = id⊗ · · · ⊗ id⊗σ ⊗ id⊗ · · · ⊗ id,

where σ is acting on V ⊗ V in position i and i+ 1.
There is a canonical surjective group homomorphism onto the symmetric group Sn,

ϕn : Bn → Sn,

which maps βi to the simple transposition τi = (i, i+ 1). Let `(g) denote the length of an element g ∈
Sn. The projection ϕn admits a set-theoretic section, called the Matsumoto section

sn : Sn → Bn,

which is determined by sn(τi) = βi and sn(τiτi+1) = sn(τi)sn(τi+1), for 1 ≤ i ≤ n, and sn(gf) =
sn(g)sn(f) if `(gf) = `(g) + `(f) for g, f ∈ Sn. Note that sn is not a group homomorphism.

The braided symmetrizer is given by the map

Sσ
n(V ) :=

∑
g∈Sn

ρn(sn(g)) : V ⊗n → V ⊗n.

Moreover, we denote

kerSσ(V ) :=
⊕
n∈Z≥0

kerSσ
n(V ).

The Nichols algebra of V is the braided Hopf algebra in YDHH defined by

B(V ) := T (V )
/

kerSσ(V ).

The Nichols algebra B(V ) has a unique Z≥0-grading

B(V ) '
⊕
n∈Z≥0

Bn(V ), Bn(V ) := T n(V )
/

kerSσ
n(V ),

since kerSσ(V ) is a homogeneous ideal of T (V ).
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Let B = B(V ) be a Nichols algebra. Since B is a left and right comodule over itself via the
comultiplication, it becomes a left and right module over B∗. Following [3], define the quantum
contraction operators iL, iR : B∗ → End(B) as the representation associated to those actions:

iLf (b) = f(b(1))b(2), iRf (b) = f(b(2))b(1) for b ∈ B, f ∈ B∗.

Consider the sln-series of irreducible quantum flag manifolds, namely, the quantum Grassmannians.
Let g = sln+1 and let m be an integer such that 1 ≤ m ≤ n. Fix S = {αi | i ∈ {1, . . . , n} \ {m}}
a subset of simple roots of g. In this case lS = glm ⊕ sln−m. The quantum flag manifold associated
to S is called the quantum (n,m)-Grassmannian and denoted by Oq(Grn,m).

As it was shown in [14] for the quantum Grassmannians Oq(Grn,m), the Heckenberger–Kolb cal-

culi Ω
(•,0)
q (Grn,m) and Ω

(0,•)
q (Grn,m) are Nichols algebras.

3.4 Noncommutative Hamiltonian dynamical systems: an open problem

Here we discuss possible ingredients of a not yet defined noncommutative Hamiltonian dynamical
system.

1. As a natural example of manifold in the noncommutative case we propose to consider the
quantum Grassmannians Oq(Grn,m). Recall, that the algebra Oq(Grn,m) admits a C∗-algebraic
completion Cq(Grn,m).

2. For a noncommutative analogue of vector fields we propose to consider the algebra of derivations
of Oq(Grn,m) (the algebra of unbounded derivations of Cq(Grn,m) in the C∗-algebraic setting).

3. For a symplectic structure for Oq(Grn,m), one can consider its Heckenberger–Kolb calculi to-
gether with the symplectic structure found by Matassa.

4. One can define a noncommutative analogue of the map I, see § 2.1.2, using the quantum con-

traction operators in the Nichols algebras Ω
(•,0)
q (Grn,m) and Ω

(0,•)
q (Grn,m).

5. It will allow to define a noncommutative Hamiltonian vector field in the same way as in the
classical situation. If the corresponding derivation of Cq(Grn,m) happens to be unbounded,
one can integrate it to a one-parameter family of automorphisms of the C∗-algebra Cq(Grn,m).
Such a one-parameter family of automorphisms will be a noncommutative version of a flow of
a Hamiltonian vector field. Such a flow will define a noncommutative version of a Hamiltonian
dynamical system.

6. The fixed points in Cq(Grn,m) of such flows can be considered as noncommutative analogues of
first integrals.

It is an intriguing open problem to formulate an analogue of Liouville’s theorem for such noncom-
mutative dynamical systems.
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Approximations of Kasparov Categories of C∗-Algebras

George Nadareishvili

1 Introduction

For a locally compact Hausdorff space X, one may consider the C∗-algebra C0(X) of continuous
functions from X to complex numbers that vanish at infinity. This construction is functorial and
makes the category of locally compact Hausdorff spaces contravariantly equivalent to the category of
commutative C∗-algebras (see for example [10]). As a result, one can translate back and forth between
topological and algebraic concepts.

topology, C0(X) proper map,
homeomorphism measure,

compact open subset,
closed subset connected,

2nd countable topological K-theory

←→

algebra, C∗-algebra A ∗-homomorphism,
isomorphism positive functional,
unital ideal,
quotient projectionless,
separable operator K-theory

That is, each property of a locally compact Hausdorff space X can be formulated in terms of the
function algebra C0(X) and will then usually make sense for any noncommutative C∗-algebra. This
way, C∗-algebra theory can successfully be regarded as a kind of “noncommutative topology”.

2 Homological techniques for C∗-algebras

2.1 The universal invariant

For simplicity of presentation we suppress degree shifts and grading for functors.
As topological spaces, we wish to study C∗-algebras using homological invariants. Due to the

theorem by Higson [4, Theorem 4.5], there exists a universal category KK receiving a functor from
C∗-algebras, such that any additive, split short exact sequence preserving functor H into an addi-
tive category A, that also inverts the tensor product with the C∗-algebra of compact operators is
automatically homotopy-invariant and factors through KK.

C∗-alg
H //

##

A

KK

>>

In this light, the study of the category KK is of a fundamental importance to noncommutative
topology. The category KK has separable C∗-algebras as objects and Kasparov KK-groups KK(A,B)
as morphisms, with the Kasparov product as composition (for details see for example [2]). In addition,
KK carries the structure of a triangulated category (see [5]).

Generalizing Atiyah–Segal’s classical vector bundle K-cohomology of spaces, the identification

Hom(C, A) = KK(C, A) ∼= K(A)

presents KK-theory as a natural generalization of K-theory. So, naturally, one wishes to compute
KK-theory (and consequentially any sensible homology theory) only using K-theoretic invariants.
However, in general, this is hard or impossible to accomplish.

One way to approach this problem is with relative homological algebra. We fix a triangulated
category T and a homological functor I : T → A beforehand (in our case this might be K-theory)
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and consider all homological functors F such that ker I ⊆ kerF on morphisms. We call these I-exact
homological functors. The idea here is that F is only at most as refined as I.

As it turns out, there is a universal functor among such F .

Definition. I-exact homological functor U is universal, if any other I-exact homological functor
G : T → A′ factors as G = Ḡ ◦ U for an exact functor Ḡ : A → A′ that is unique up to natural
isomorphism.

Theorem 2.1 (Beligiannis [1, Section 3]). For every homological functor I on a triangulated category
T, there exists an abelian category AI(T) and a universal I-exact homological functor U : T→ AI(T).

An object P ∈ T is called I-projective if HomT(P,−) is an I-exact functor. In favorable cases, when
enough I-projective objects are available, we can build a consequent I-relative homological algebra
by constructing corresponding I-projective resolutions. Having a universal I-exact stable homological
functor U means that the abelian homological algebra in A and I-relative homological algebra in T
are the same. More precisely, we have

Theorem 2.2 (Beligiannis [1, Proposition 4.19]). Let I be a homological functor on a triangulated
category T and let U : T→ A be a universal I-exact homological functor into an abelian category A.
Suppose that idempotent morphisms in T split and that there are enough I-projective objects in T. Then
there are enough projective objects in A and U induces an equivalence between the full subcategories
of I-projective objects in T and of projective objects in A.

It is also possible to define derived functors relative to I. Then one can write down a spectral
sequence that relates a homological functor to its derived functors. We are only going to recall the case
of a Universal Coefficient Theorem, where this spectral sequence collapses to a short exact sequence
and we are able to compute the derived functors using the universal I-exact functor.

Theorem 2.3 (Meyer-Nest [6, Theorem 4.4]). Let I be a homological functor in a triangulated category
T and let U : T→ A be a universal I-exact homological functor into a abelian category A with enough
projective objects. For A ∈ T, let U(A) have a projective resolution of length 1. Suppose also that A
belongs to a smallest triangulated subcategory generated by I-projective objects. Then for any B ∈ T
there is a natural short exact sequence

Ext1A
(
U(ΣA), U(B)

)
// // T(A,B) // // HomA

(
U(A), U(B)

)
,

where Ext1A and HomA denote extension and morphism groups in A and Σ is a suspension on T.

When triangulated category in question is KK, K-theory itself turns out to be a universal K-exact
homological functor. The suspension Σ is tensoring with C0(R) and the triangulated subcategory
generated by K-projective objets is what is called a bootstrap class. Consequently, we get the celebrated
Universal Coefficient Theorem by Rosenberg and Schochet

Theorem 2.4 (Rosenberg–Schochet [9]). Let A be a separable C∗-algebra. Then A is in a bootstrap
class if and only if, for all B ∈ KK, there is a short exact sequence of abelian groups

Ext1Ab

(
K(ΣA),K(B)

)
// // KK(A,B) // // HomAb

(
K(A),K(B)

)
.

2.2 Examples of use

2.2.1 Localizing subcategories in the bootstrap class

The relevant notion of a subcategory of a triangulated category T with coproducts is that of a localizing
subcategory.

Localizing subcategories form a lattice under intersection and triangulated closure of the union.
The question arises: can we classify the lattice of all localizing subcategories Loc for KK? The answer
is yes, if we restrict our attention to a smaller bootstrap class B ⊆ KK and use homological techniques
explained in a previous section. More precisely, using the Universal Coefficient Theorem one gets
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Theorem 2.5 (Dell’Ambrogio [3]). There is an inclusion-preserving bijection between localizing sub-
categories of the Bootstrap class on the one hand, and subsets of the Zariski spectrum Spec(Z) on the
other

Loc(B) ∼= P
(

Spec(Z)
)

= P
(
{prime numbers and zero}

)
.

2.2.2 Localizing subcategories in the filtered bootstrap class

Similar to KK, one can define a universal triangulated category KK(n) for filtrations of noncommu-
tative spaces

A1 ⊆ A2 ⊆ · · · ⊆ An,

where Ai is an ideal in Ai+1. There is a corresponding bootstrap class B(n) with the version of the
Universal Coefficient Theorem (see [7]).

We wish to classify all localizing subcategories in B(n). Denote by NCn+1 the lattice of noncrossing
partitions of the regular n + 1-gon (see Figure 2.1). Again, using techniques of relative homological
algebra, we get

Theorem 2.6 (Nadareishvili [8]). The lattice of localizing subcategories of B(n) is isomorphic to the
product of lattices of noncrossing partitions of n + 1-gon over SpecZ

Loc
(
B(n)

) ∼= ∏
p∈SpecZ

NCp
n+1.

Theorem (Nadareishvili [8]). The lattice of localizing subcategories of B(n)
is isomorphic to the product of lattices of noncrossing partitions of n + 1-gon
over SpecZ

Loc
(
B(n)

) ∼=
∏

p∈SpecZ
NCp

n+1.

12

3

4 5

6

12

3

4 5

6

Figure 1: The left picture shows the noncrossing partition {{1, 2, 4}, {3}, {5, 6}}
of the regular hexagon represented as vertices on a circle. The partition
{{1, 2, 4}, {3, 6}, {5}} on the right picture is crossing.

For example, the lattice of localizing subcategories of B(3) for a fixed p is
given in Figure 2.

Figure 2: Localizing subcategories of B(3) for a fixed p.

4

Figure 2.1. The left picture shows the noncrossing partition {{1, 2, 4}, {3}, {5, 6}} of the regular hexagon

represented as vertices on a circle. The partition {{1, 2, 4}, {3, 6}, {5}} on the right picture is crossing.

For example, the lattice of localizing subcategories of B(3) for a fixed p is given in Figure 2.2.

2.2.3 Finite group actions

For an at most countable full subcategory C ⊆ T with countable coproducts, let IC be the homological
functor

IC : T −→
∏
C∈C

AbZ, A 7−→
(
HomT(C,A)

)
C∈C ,

where we assume that IC(A) is countable for all A ∈ T. The enrichment of IC to the functor

I ′C : T −→ Funct(Cop,Ab)c,

into the abelian category of countable functors, is the universal IC-exact stable homological functor [7,
Theorem 4.4]. In general, the arising spectral sequence that relates a homological functor to its derived
functors does not degenerate to a short exact sequence to give a Universal Coefficient Theorem.

For example, we can look at a category KKG, Kasparov’s category of equivariant C∗-algebras with
actions of a finite group G. Here, we should take C to be the set of induced algebras of matrix algebras
over subgroups of G. This gives all Type-I C∗-algebras. Even though there is no Universal Coefficient
Theorem, the computation of the universal invariant in question can again be done using homological
techniques.

One can push this even further and explore the special circumstances under which the Universal
Coefficient Theorem is available. To what extent this is possible is a work in progress.
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Smale Spaces and Their C∗-Algebras

Karen R. Strung

Abstract

A Smale spaces is a type of hyperbolic dynamical system introduced by Ruelle to model the
behaviour of the restriction of a so-called “Axiom A diffeormorphism” to its basic sets. Examples
include shifts of finite type, certain tiling spaces, and Anosov diffeormorphisms. From a Smale
space we can construct several C∗-algebras which capture different aspects of the dynamics. This
note explores the interactions between Smale spaces and C∗-algebras. Topological dynamics and
Smale spaces are introduced along with several examples. It is shown how the dynamics of a
Smale space leads to étale groupoids, which are then used to construct C∗-algebras. Properties of
the C∗-algebras and their relation to properties of the Smale space are investigated. Appendices
on the basics of C∗-algebras are included.

1 Introduction

The study of C∗-algebras has its origins in quantum physics, where they were used to study the
unusual noncommutative behaviour of observables at the quantum level. Mathematicians quickly
realized that C∗-algebras were useful models to encode and study the behaviour of many physical and
mathematical objects including symmetries, networks, and systems which evolve over time. Stemming
from the pioneering work of Murray and von Neumann on what they called rings of operators, the
study of C∗-algebras continues to be an active area of research.

Interpreting a mathematical or physical system in C∗-algebraic theory typically involves input
information from the system in question and an output C∗-algebra. While the theory is flexible
enough to allow for a wide range of input information, the output C∗-algebra has sufficient structure
to allow for tractable analysis. In particular, topological dynamical systems – topological spaces
equipped with continuous transformations – have long been a source for constructing interesting
examples of C∗-algebras. The process of encoding the relevant dynamics in a C∗-algebra first involves
constructing a topological groupoid which allows one to study its groupoid C∗-algebra or C∗-algebras.
The underlying dynamical system influences the structural properties of the C∗-algebra while at the
same time one hopes to gain information about dynamical systems otherwise inaccessible without the
C∗-algebraist’s toolkit.

Smale spaces are a class of topological dynamical systems that were defined by Ruelle [24] as a way
of axiomatizing the behaviour of the basic sets associated to Smale’s Axiom A diffeomorphisms [28].
A Smale space is a pair (X,ϕ), where X is a compact metric space and ϕ : X → X a homeomorphism,
which has a local hyperbolic structure: at every point x ∈ X there is a small neighbourhood which
decomposes into the product of a stable and unstable set. For a Smale space, the dynamical behaviour
which we seek to study is the asymptotic behaviour of points. The appropriate C∗-algebras, defined
by Putnam [18] following earlier work by Ruelle [23] encode this behaviour via groupoid C∗-algebras
associated to stable, unstable, and homoclinic equivalence relations, respectively.

This note is based on a course given at the summer school “Algebra, topology and Analysis: C∗

and A∞ algebras” which took place in Gonio, Batumi, Georgia in September 2021. It is intended as
an introduction to Smale spaces and their C∗-algebras. In Section 2 some of the basics of topological
dynamics are introduced, in particular recurrence properties and topological entropy. Section 3 focuses
specifically on Smale spaces. Before constructing C∗-algebras, some material on étale groupoids is
developed in Section 4. The final section looks at properties of the resulting groupoid C∗-algebras.
As this was originally an introductory series of lectures, no previous knowledge of C∗-algebras was
assumed. Therefore two appendices have been included: The first appendix develops the basics of
C∗-algebras. The second includes some details about more advanced notions.
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2 Dynamics

Although this note concerns itself with Smale spaces, we begin in the more general setting of topo-
logical dynamics. Topological dynamical systems are topological spaces equipped with continuous
transformations. Here, this means a self-homeomorphism. One can think of a topological dynamical
as discrete time evolution of a system. Each application of the homeomorphism correspondence to a
step (forward or backward) in time after which one inspects the state of the system. For this reason,
we would like to understand what happens to points in the spaces under repeated application of the
homeomorphism. With that in mind, we are interested in recurrence properties, for example, is a
given point fixed by the system? Does it return to a neighbourhood of itself? If so, how often? We
are also interested in the entropy of the system, which measures its chaos. In this section, we define
these concepts. We will see how they relate to Smale spaces in Section 3.

Definition 2.1. A topological dynamical system is a pair (X,ϕ) where X is a compact Hausdorff
space and ϕ : X → X is a homeomorphism.

Given a point x ∈ X, we denote its orbit by

orbϕ(x) :=
{
ϕn(x) | n ∈ Z

}
.

We can also consider the forward orbit of x, {ϕn(x) | n ∈ N} and the backward orbit of x, {ϕ−n(x) |
n ∈ N}.

A point x ∈ X is called a fixed point if ϕ(x) = x. It is periodic if there exists n > 0 such that
ϕn(x) = x. If x is periodic, its period is

min
{
n ∈ N \ {0} | ϕn(x) = x

}
.

Given n ∈ N \ {0}, let
Pern(X,ϕ) :=

{
x ∈ X | x has period n

}
,

the set of periodic points with period n, and let

Per(X,ϕ) :=
⋃

n>0

Pern(X,ϕ),

the periodic points of (X,ϕ).

Examples 2.2.

(1) Let ϕ : S2 → S2 be a homeomorphism. It follows from the Hairy Ball theorem that ϕ must fix
the poles or swap them. Thus any such systems has periodic points.

(2) Let 0 ≤ θ < 1 and define Rθ : T→ T by Rθ(λ) = e2πiθλ. If θ ∈ Q, then every point is periodic.
If θ ∈ [0, 1) \Q, then there are no periodic points.

Definition 2.3. Let (X,ϕ) be a topological dynamical system. A point x ∈ X is called non-wandering
if, for every open set U ⊂ X containing x, there exists n ∈ N\{0} such that ϕn(U)∩U 6= ∅. Otherwise
x is called wandering.

Denote by NW (X,ϕ) the set of non-wandering points for the topological dynamical system (X,ϕ).
Note that x ∈ NW (X,ϕ) if and only if for every open set U ⊂ X containing x, there exists z ∈ U
and n ∈ N \ {0} such that ϕn(z) ∈ U . (If ϕn(U) ∩ U is non-empty, choose y ∈ ϕn(U) ∩ U and let
z = ϕ−n(y).)

Clearly every periodic point is non-wandering. If the periodic points are dense in X, then
NW (X,ϕ) = X.

Proposition 2.4. Let (X,ϕ) be a topological dynamical system. Then

(i) NW (X,ϕ) is ϕ-invariant, that is, ϕ(NW (X,ϕ)) ⊂ NW (X,ϕ),
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(ii) NW (X,ϕ) is closed,

(iii) NW (X,ϕ) is non-empty.

(Only (iii) requires that X is compact.)

Proof. For (i), let x ∈ NW (X,ϕ). Let V be an open neighbourhood of ϕ(x). Then ϕ−1(V ) = U is
an open set containing x, so there is n ∈ N \ {0} such that ϕ(U) ∩ U 6= ∅. It follows that

ϕ(V ) ∩ V = ϕn−1(ϕ(U)) ∩ ϕ(U) 6= ∅.

So ϕ(x) ⊂ NW (X,ϕ).

For (ii), suppose that (xn)n∈N ⊂ NW (X,ϕ) is a sequence converging to some x ∈ X. Then for
any open set U containing x there exists N such that xn ∈ U for every n > N . Since xn ∈ U , there
exists some m ∈ N \ {0} such that ϕn(U) ∩ U 6= ∅. Thus x ∈ NW (X,ϕ).

Now we prove (iii). Suppose that NW (X,ϕ) is empty. Then if x1 ∈ X, for every U1 ⊂ X
containing x1, we have that ϕn(U1) ∩ U1 = ∅, for every n ∈ N. If X \ ⋃

n∈N
αn(U1) is non-empty then

we must have αn(U)∩αm(U) = ∅ for every n 6= m ∈ N, since otherwise we could find a non-wandering
point in αmin{m,n}(U). Since X is compact, we must have

⋃
n∈N

αn(U1) = X. Thus finitely many αn(U)

cover X, so there must be m ∈ N such that αn(U) ∩ αm(U) 6= ∅, a contradiction. So NW (X,ϕ) is
non-empty.

If NW (X,ϕ) = X, then we say that (X,ϕ) is non-wandering.

Definition 2.5. Let (X,ϕ) be a topological dynamical system.

(1) (X,ϕ) is irreducible if, for every pair U , V of open sets there exists N ∈ N \ {0} such that
ϕN (U) ∩ V 6= ∅.

(2) (X,ϕ) is irreducible if, for every pair U , V of open sets there exists N ∈ N \ {0} such that
ϕn(U) ∩ V 6= ∅ for every n ≥ N .

It is clear that if (X,ϕ) is mixing, then it is also irreducible, and if it is irreducible then it is
also non-wandering. However, none of the reverse implications hold. A very simple example is the
following. Let X = {0, 1} and define ϕ : X → X by ϕ(0) = 1 and ϕ(1) = 0. Then (X,ϕ) is
non-wandering and irreducible, but is not mixing.

There are various notions of what it means for two topological dynamical systems to be “the same”.
The strongest of these is conjugacy.

Definition 2.6. Topological dynamical systems (X,ϕ) and (Y, ψ) are conjugate if there exists a
homeomorphism h : X → Y such that h ◦ ϕ = ψ and hence also h−1 ◦ ψ = ϕ. The homeomorphism h
is a called a conjugacy.

An important conjugacy invariant for topological dynamical systems is its topological entropy.
Loosely speaking, this measures how choatic the dynamical system is by examining the complexity of
the orbit structure.

Let (X, d) be a compact metric space and ϕ : X → X a homeomorphism. Let N ∈ Z≥0 and define

dN (x, y) = max
0≤j<N

d(ϕj(x), ϕj(y)).

If U is a collection of subsets of X then we call U an (N, ε)-cover if U is a cover of X and for each
A ∈ U , we have dN (x, y) < ε for every x, y ∈ A. In other words, the diameter of A with respect to dN
is less than ε. Let |U| denote the cardinality of a cover U , and set

cov (N, ε, ϕ) := min
{
|U| | U is an (N, ε)-cover of X

}
.
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Definition 2.7. Let (X,ϕ) be a topological dynamical system where X is a compact metric space.
Then the topological entropy of (X,ϕ) is

h(ϕ) := lim
ε→0+

lim sup
n→∞

1

n
log(cov (n, ε, ϕ)) ∈ R≥0 ∪ {∞}.

A set A ⊂ X is called (N, ε)-spanning if, for every x ∈ X, there exists y ∈ A such that dN (x, y) < ε.
Since X is compact, there always exists (N, ε)-spanning sets which are finite. Let |A| denote the
cardinality of the set A. Define

span (N, ε, ϕ) := min{|A| | A is (N, ε)-spanning}.

A A ⊂ X is (N, ε)-separated if, for every x, y ∈ A we have DN (x, y) > ε. Define

sep (N, ε, ϕ) :=
{
|A| | A is (N, ε)-separated

}
.

These allow for the following equivalent definitions of topological entropy [3].

Proposition 2.8. Let (X,ϕ) be a topological dynamical system where X is a compact metric space.
Then

h(ϕ) = lim
ε→0+

lim sup
n→∞

1

n
log(span (n, ε, ϕ)) = lim

ε→0+
lim sup
n→∞

1

n
log(sep (n, ε, ϕ)).

3 Smale spaces

A Smale space (X,ϕ) is a dynamical system with a particulary nice local hyperbolic structure. Before
giving the (rather unintuitive) definition, let us consider some examples of Smale spaces.

Example 3.1 (Edge shift of a finite directed graph). Let G = (V,E) be a finite directed graph,
that is, V is a finite set of vertices and E a finite set of edges, and there are maps r, s : E → V ,
respectively called the range and source maps, which make the edges directed. We think of an edge
e with s(e) = v1 and r(e) = v2 as an arrow from v1 to v2. For example, the graph in Figure 3.1 is
given by V = {v0, v1, v2} and E = {e0, e1, e2, e3, e4}, with v0 = s(e0) = r(e0) = s(e1) = s(e2) = r(e3),
v1 = r(e1) = s(e4), and v2 = r(e2) = s(e3).

v0

e1

((

e2 //

e0

,, v1

e4oov2

e3
oo

Figure 3.1. A directed graph.

The bi-infinite path space of G is

XG :=
{

(xn)n∈Z ⊂ EZ | s(xn+1) = r(xn) for all n ∈ Z
}
,

together with the topology induced by the metric

d(x, y) = inf
{

2−n | xj = yj for every n < j < n
}
,

where x = (xn)n∈Z ∈ XG and y = (yn)n∈Z ∈ XG. The metric space (XG, d) is a Cantor space. We
equip XG with the left shift map,

σ : XG → XG, x 7→ σ(x),

where
σ(x)n = xn+1, n ∈ Z.
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Let ε = k−1 for k ≥ 1 and let x = (xn)n∈Z ∈ XG. Let B(x, ε) denote the open ball of radius ε
centred at x. Define

Xs
G(x, ε) :=

{
y | yj = xj for every j ≥ −k

}
.

Let y, z ∈ Xs
G(x, ε). Then xj = yj = zj for every −k ≤ j ≤ k, so y, z ∈ B(x, ε), and d(y, z) ≤ ε.

If y 6= z, then there must be some m such that x−m−1 6= y−m−1 but xj = yj for every j ≥ m. So
d(x, y) = 2m+1. Now let us apply the shift map. We have

σ(y)n = yn+1 = zn+1 = σ(z)n,

whenever n+ 1 > −m− 1. Thus

d(σ(y), σ(z)) =
1

2
d(y, z).

Thus
d(σn(y), σn(z))→ 0 as n→∞.

Now define
Xu
G(x, ε) :=

{
y | yj = xj for every j ≤ −k

}
.

Again we have y, z ∈ B(x, ε) if y, z ∈ Xu
G(x, ε). However, a similar argument to the above shows that,

for y 6= z, we see the opposite of what we observed for points in Xs
G(x, ε). In particular,

d(y, z) ≤ 1

2
d(σ(y), σ(z),

or, since σ is invertible,

d(σ−1(y), σ−1(z)) <
1

2
d(y, z).

Thus
d(σ−n(y), σ−n(y))→ 0 as n→∞.

Observe that y ∈ Xs(x, ε) ∩Xu(x, ε) if and only if y = x.
Now suppose that y ∈ B(x, ε). Define ys, yu ∈ XG by

ysn :=

{
xn, j ≥ −k
yn, j < −k, yun :=

{
xn, j ≤ k
yn, j > k.

Then ys ∈ Xs
G(x, ε) and yu ∈ Xu

G(y, ε).
It follows that B(x, ε) can be given a local coordinate system where our axes are Xs(x, ε) and

Xu(x, ε) with origin at the point x. Along the Xs(x, ε), the homeomorphism σ moves points towards
each other, while along the Xu(x, ε), σ moves points further apart.

Of course a point y need not be in B(x, ε) for the limit lim
n→∞

d(σn(x), σn(y)) to be zero. For this

to occur, it is enough that there is some N such that xn = yn for every n ≥ N . We set

Xs
G(x) :=

{
y ∈ X | d(σn(x), σn(y))→ 0 as n→∞

}
,

and
Xu
G(x) :=

{
y ∈ X | d(σ−n(x), σ−n(y))→ 0 as n→∞

}
.

Unlike for the local sets, however, we certainly don’t have that XG
∼= Xs(x)×Xu(x).

An edge shift is an example of a shift of finite type, which is defined as follows. Let A be a finite
alphabet of symbols. By a word in A we mean a finite sequence of elements of A. If w = a1a2 . . . an
is a word in A, we say that a sequence x ⊂ AZ contains w if there exists j ∈ Z such that xj+i = ai,
1 ≤ i ≤ n.

Let F be a finite set of words in A, which we call forbidden words, the reason for which will become
clear momentarily. Define

XF :=
{
x ∈ XF | x contains no words in F

}
.
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Thus any sequence containing a forbidden word is excluded from the set XF . The metric and shift
maps are defined the same as for the edge shift above. The system (XF , σ) is called a shift of finite
type.

In the case of an edge shift on a graph G = (V,E), our alphabet is given by the edge set E and
the set of forbidden words consists of words eiej where r(ei) 6= s(ej). Thus the set of forbidden words
for the edge shift corresponding to the graph in Figure 3.1 is

F :=
{
e0e3, e0e4, e1e0, e1e2, e1e3, e2e0, e2e1, e2e4, e3e4, e4e0, e4e1, e4e2

}
.

Example 3.2 (Hyperbolic toral automorphisms). Let A be a 2 × 2 matrix with integer entries,
|det(A)| = 1, and eigenvalues not equal to ±1. Since |det(A)| = 1, we have that A is invertible and
AZ2 ⊂ Z2, so there is a well-defined homeomorphism of the 2-torus,

ϕ : T2 ∼= R2/Z2 → T2, v 7→ Av mod Z2.

For example, the matrix (
2 1
1 1

)

satisfies the conditions above. The corresponding homeomorphism of T2 is the well-known Arnold’s
cat map.

Any such matrix A has eignevalues of the form

|λs| = µ, |λu| =
1

µ
,

for some 0 < µ < 1. Let vs be a normalized eigenvector corresponding to the eigenvalue λs, and vu a
normalized eigenvector corresponding to λu.

Let v ∈ T2 and ε < 1/2. Define

(T2)s(v, ε) :=
{
w ∈ T2 | w = v + tvs mod Z2 for some |t| < ε

}
,

and
(T2)u(v, ε) :=

{
w ∈ T2 | w = v + tvu mod Z2 for some |t| < ε

}
.

If w, z ∈ (T2)s(v, ε) where w = v + t1vs mod Z2, z = v + t2vs mod Z2 then d(w, z) = |t1 − t2|
while d(ϕ(w)ϕ(z)) = λs|t1 − t2|. Thus d(ϕ(v), ϕ(w)) ≤ µd(w, z). On the other hand, if

w = v + t1vu mod Z2, z = v + v + t2vu mod Z2 ∈ (T2)u(v, ε),

then
d(ϕ−1(w), ϕ−1(z)) ≤ µd(w, z).

A hyperbolic toral automorphisms is an example of an Anosov diffeomorphism, which is in turn
an example of an Axiom A diffeormorphism.

Definition 3.3. A Smale space consists of a compact metric space (X, d) together with a homeomor-
phism ϕ : X → X, constants ε

X
> 0, 0 < λ < 1, and a bracket map

[ · , · ] : ∆ε
X

:=
{

(x, y) ∈ X ×X | d(x, y) ≤ ε
X

}
→ X

which is continuous and satisfies

B1. [x, x] = x for every x ∈ X

B2. [x, [y, z]] = [x, z] for every x, y, z ∈ X whenever defined,

B3. [[x, y], z] = [x, z] for every x, y, z ∈ X whenever defined,

B4. [ϕ(x), ϕ(y)] = ϕ([x, y]) for every x, y ∈ X whenever defined,
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and for y, z ∈ X such that x 6= y, and d(x, y), d(x, z) ≤ ε
X

,

C1. if [y, x] = x = [z, x], then d(ϕ(y), ϕ(z)) ≤ λd(y, z),

C2. if [x, y] = [x, z], then d(ϕ−1(y), ϕ−1(z)) ≤ λd(y, z).

For example, suppose that XF is the full 2-shift. This is a shift of finite type with alphabet
A = {0, 1} and no forbidden words. Equivalently, it is the edge shift on the directed graph G2 = (V =
{v}, E = {e0, e1}), as shown in Figure 3.2.

SMALE SPACES AND THEIR C∗-ALGEBRAS 7

Any such matrix A has eignevalues of the form

|λs| = µ, |λu| =
1

µ
,

for some 0 < µ < 1. Let vs be a normalized eigenvector corresponding to the
eigenvalue λs, and vu a normalized eigenvector corresponding to λu.

Let v ∈ T2 and ε < 1/2. Define

(T2)s(v, ε) := {w ∈ T2 | w = v + tvs mod Z2 for some |t| < ε},
and

(T2)u(v, ε) := {w ∈ T2 | w = v + tvu mod Z2 for some |t| < ε}.
If w, z ∈ (T2)s(v, ε) where w = v + t1vs mod Z2, z = v + t2vs mod Z2 then

d(w, z) = |t1 − t2| while d(ϕ(w)ϕ(z)) = λs|t1 − t2|. Thus d(ϕ(v), ϕ(w)) ≤ µd(w, z).
On the other hand, if w = v+ t1vu mod Z2, z = v+v+ t2vu mod Z2 ∈ (T2)u(v, ε)
then d(ϕ−1(w), ϕ−1(z)) ≤ µd(w, z).

A hyperbolic toral automorphisms is an example of an Anosov diffeomorphism,
which is in turn an example of an Axiom A diffeormorphism.

Definition 3.3. A Smale space consists of a compact metric space (X, d) together
with a homeomorphism ϕ : X → X, constants εX > 0, 0 < λ < 1, and a bracket
map

[·, ·] : ∆εX := {(x, y) ∈ X ×X | d(x, y) ≤ εX} → X

which is continuous and satisfies

B1. [x, x] = x for every x ∈ X
B2. [x, [y, z]] = [x, z] for every x, y, z ∈ X whenever defined,
B3. [[x, y], z] = [x, z] for every x, y, z ∈ X whenever defined,
B4. [ϕ(x), ϕ(y)] = ϕ([x, y]) for every x, y ∈ X whenever defined,

and for y, z ∈ X such that x 6= y, and d(x, y), d(x, z) ≤ εX ,

C1. if [y, x] = x = [z, x] then d(ϕ(y), ϕ(z)) ≤ λd(y, z),
C2. if [x, y] = [x, z] then d(ϕ−1(y), ϕ−1(z)) ≤ λd(y, z).

For example, suppose that XF is the full 2-shift. This is a shift of finite type
with alphabet A = {0, 1} and no forbidden words. Equivalently, it is the edge shift
on the directed graph G2 = (V = {v}, E = {e0, e1}), as shown in Figure ??.

•
v0

e1e0

Figure 2. Graph of the full 2-shift.

Thus X = {0, 1}Z and σ : X → X is the left shift. Let εX := 1/2 and λX = 1/2.
We define the bracket map

[·, ·] : ∆1/2 → X,

as follows: For x = (xn)n∈Z and y = (yn)n∈Z, set

[x, y]n :=

{
xn n ≤ 0,
yn n ≥ 0.

Figure 3.2. Graph of the full 2-shift.

Thus X = {0, 1}Z and σ : X → X is the left shift. Let ε
X

:= 1/2 and λX = 1/2. We define the
bracket map

[ · , · ] : ∆1/2 → X,

as follows: For x = (xn)n∈Z and y = (yn)n∈Z, set

[x, y]n :=

{
xn, n ≤ 0,

yn, n ≥ 0.

Definition 3.4. Let ((X, d), ε
X
, λX , [ · , · ]) be a Smale space. For x ∈ X and 0 < ε ≤ ε

X
define the

local stable set around x of size ε to be

Xs(x, ε) :=
{
y ∈ X | d(x, y) < ε, [y, x] = x

}
,

and the local unstable set around x of size ε to be

Xu(x, ε) =
{
y ∈ X | d(x, y) < ε, [x, y] = x

}
.

Remark 3.5. Suppose that ((X, d), ϕ, ε
X
, λX , [ · , · ]) is a Smale space. Consider the 5-tuple

((X, d), ϕ−1, ε
X
, λ, { · , · }), where {x, y} = [y, x] for every x, y ∈ X. It is easy to check that this

is also a Smale space and that

Xs
ϕ−1(x, ε) = Xu

ϕ(x, ε) and Xu
ϕ−1(x, ε) = Xu

ϕ(x, ε),

for every 0 < ε ≤ ε
X

and every x ∈ X. This relatively easy observation is quite useful: it means that
there is usually no loss of generality in considering only the local stable (or local unstable) sets of a
Smale space. It is also straightforward to check that, for any n ∈ Z>0, the dynamical system (X,ϕn)
is a Smale space. We leave it as an exercise to determine what the bracket map and Smale space
constants are in this case.

Now we will prove some simple facts about the behaviour of the bracket map.

Lemma 3.6. Let (X,ϕ) be a Smale space. Suppose that x, y ∈ X satisfy d(x, y) < ε
X

. Then

(1) [x, y] = x if and only if [y, x] = y,

(2) [x, y] = y if and only if [y, x] = x.

Proof. If [x, y] = x then [y, x] = [y, [x, y]]. By B2, [y, [x, y]] = [y, y] and by B1, [y, y] = y. If [y, x] = y
then [x, y] = [x, [y, x]] = [x, x] = x, again using B2 and B1. This shows (1). The proof of (2) is similar
and left to the reader.
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Lemma 3.7. Let (X,ϕ) be a Smale space. Suppose that x, y ∈ X satisfy d(x, y) < ε
X

and also that

d
(
x, [x, y]), d(y, [x, y]

)
< ε

X
.

Then

(1) [x, y] ∈ Xs(x, ε
X

),

(2) [x, y] ∈ Xu(y, ε
X

).

Proof. For (1), we have [[x, y], x] = [x, x] = x by B3 followed by B1. Thus [x, y] ∈ Xs(x, ε
X

). For (2),
we have [y, [x, y]] = [y, y] = y by B2 followed by B1. Thus [x, y] ∈ Xu(y, ε

X
).

Now we come to an important theorem, which shows that the existence of the bracket map really
does capture the heuristic idea of having a system of local stable and unstable coordinates.

Theorem 3.8. Let (X,ϕ) be a Smale space. There exists ε′
X

satisfying 0 < ε′
X
≤ ε

X
/2, such that, for

every ε > 0 with 0 < ε ≤ ε′
X

, and every x ∈ X, the map

[ · , · ] : Xu(x, ε)×Xs(x, ε)→ X

is a homeomorphism onto its image, which is an open subset of X containing x.

Proof. Suppose that y, z ∈ X satisfy

d(x, y) < ε ≤ ε
X

2
and d(x, z) < ε ≤ ε

X

2
.

Then by the triangle inequality, d(y, z) ≤ ε
X

. Thus the map is well defined.
Since [ · , · ] is jointly continuous and satisfies [x, x] = x, there exists 0 < δ ≤ ε

X
such that, for

every x, y ∈ X with d(x, y) ≤ δ we have that both

d
(
x, [x, y]

)
≤ ε

X

2
and d

(
x, [y, x]

)
≤ ε

X

2
.

Choose ε′
X
≤ ε

X
/2 to be small enough that if y, z ∈ X satisfy d(x, y) ≤ ε′

X
and d(x, z)ε′

X
, then

d(x, [y, z]) ≤ δ. Then the map
h(y) :=

(
[y, x], [x, y]

)
,

is defined on a neighbourhood of x and is evidently continuous. We claim that h is inverse to then
map [ · , · ] : Xu(x, ε)×Xs(x, ε)→ X. For y ∈ X such that d(x, y) < ε′X , we have

[ · , · ] ◦ h(y) =
[

[y, x], [x, y]
]

= [y, [x, y] ] = [y, y] = y.

Now suppose that y ∈ Xu(x, ε) and z ∈ Xs(x, ε). Then

h([y, z]) =
(
[ [y, z], x], [x, [y, z] ]

)
=
(
[y, x], [x, z]

)
= [y, z].

This proves the claim. Finally, we show that the image of the map is open. Let y ∈ Xu(x, ε) and
z ∈ Xs(x, ε). Since the bracket map is continuous, there is δ′ > 0 such that

h
(
B([y, z], δ′)

)
⊂ B(x, ε− d(x, y))×B(x, ε− d(x, z)),

which is to say, h(B([y, z], δ′)) is in the domain of [ · , · ]. Hence B([y, z], δ′) is in the range of [ · , · ],
which proves the theorem.

Proposition 3.9. There exists a constant ε1 > 0 such that, for every 0 < ε ≤ ε1, the following hold.

(1) For every x, y ∈ X, we have d(ϕn(x), ϕn(y)) < ε for every n ≥ 0 if and only if y ∈ Xs(x, ε).

(2) For every x, y ∈ X, we have d(ϕ−n(x), ϕ−n(y)) < ε for every n ≥ 0 if and only if y ∈ Xu(x, ε).



Summer School/Conference “Algebra, Topology and Analysis: C∗ and A∞ Algebras” 81

Proof. There exists 0 < ε1 ≤ εX such that for every x, y ∈ X with d(x, y) < ε1, then d([y, x], x) < ε
X

.
Let 0 < ε ≤ ε1 and suppose that y ∈ Xs(x, ε). Then d(ϕ(x), ϕ(y)) ≤ λXd(x, y) < ε. Thus

ϕ(y) ∈ Xs(ϕ(x), ε). By induction, we also have d(ϕn(x), ϕn(x)) < ε for every n ≥ 0.
Conversely, suppose that d(ϕn(x), ϕn(y)) < ε for every n ≥ 0. Then since ε ≤ ε

X
, the bracket

[ϕn(y), ϕn(x)] is defined for every n ≥ 0. Since [ϕn(y), ϕn(x)] is defined, we have [ϕn(y), ϕn(x)] ∈
Xs(ϕn(x), ε) for every n ≥ 0. By B4 applied to ϕ−1 we have

ϕ−1
(
[ϕn(y), ϕn(x)]

)
= [ϕn−1(y), ϕn−1(x)]

and therefore
d
(
ϕn−1(x), [ϕn−1(y), ϕn−1(x)]

)
≤ λXd

(
ϕn(x), [ϕn(y), ϕn(x)]

)
.

By induction, we see that

d
(
x, [y, x]

)
≤ λnd

(
ϕn(x), [ϕn(y), ϕn(x)]

)
≤ λnXεX .

Since λX < 1, we have x = [y, x]. Hence y ∈ Xs(x, ε).
The proof of (2) follows by applying (1) to the Smale space (X,ϕ−1), see Remark 3.5.

Observe that the previous proposition tells us that the bracket map only depends on ((X, d), ϕ).
In other words, a dynamical system (X,ϕ) admits at most one Smale space structure.

Theorem 3.10. With ε1 as above, if d(x, y) ≤ ε
X

and d(x, [x, y]), d(y, [x, y]) < ε1, then

{[x, y]} = Xs(x, ε1) ∩Xu(y, ε1).

Corollary 3.11. If x, y ∈ X and d(ϕn(x), ϕn(y)) < ε1 for every n ∈ Z, then x = y.

When a dynamical system (X,ϕ) satisfies the corollary above, we say that (X,ϕ) is expansive for
the constant ε1.

Although Smale spaces have a rich local structure, as with most dynamical systems, we are also
interested with the global behaviour of the system.

Definition 3.12. Let (X,ϕ) be a Smale space. Two points x, y ∈ X are called stably equivalent,
denoted x ∼s y if

lim
n→∞

d(ϕn(x), ϕn(y)) = 0.

The global stable set of a point x ∈ X is defined to be

Xs(x) :=
{
y ∈ X | x ∼s y

}
.

Similarly, to x, y ∈ X are unstably equivalent, x ∼u y if

lim
n→∞

d(ϕ−n(x), ϕ−n(y)) = 0.

The global unstable set of x ∈ X is

Xu(x) :=
{
y ∈ X | x ∼u y

}
.

Observe that both ∼s and ∼u are equivalence relations on X.
Clearly the local stable set of a point x ∈ X is contained in the global stable set of X, and similarly

for the local and global unstable sets. As we observed for the shifts of finite type in Example 3.1, the
converse will not hold in general. However, we can characterize the global sets in terms of the local
sets. This is useful for the purpose of putting a topology on these sets. The proof of the following
proposition is straightforward.

Proposition 3.13. Let (X,ϕ) be a Smale space and 0 < ε ≤ ε
X

. Then

(1) Xs(x) =
⋃
n≥0

ϕ−n(Xs(ϕn(x), ε)),
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(2) Xu(x) =
⋃
n≥0

ϕn(Xu(ϕ−n(x, ε)).

We endow Xs(x) and Xu(x) with the inductive limit topology. With this topology, Xs(x) and
Xu(x) are locally compact and Hausdorff.

Definition 3.14. Let (X,ϕ) be a Smale space. Two points x, y ∈ X are homoclinic, written x ∼h y,
if x ∼s y and x ∼u y. The homoclinic set of a point x is defined by

Xh(x) =
{
y ∈ X | x ∼h y

}
.

Again, it is clear that ∼h is an equivalence relation on X. Observe that, unlike the stable and
unstable relation, it doesn’t make sense to talk about a “local” homoclinic set as, if y ∈ X satisfies
[y, x] = x = [x, y] implies that the only element in such a set would be x itself.

We finish this section by collecting some facts about Smale spaces that will have important conse-
quences for the C∗-algebras we construct in Section 5. The next theorem is proved using the concept
of shadowing, which we will not discuss here. For a discussion of shadowing in Smale spaces and a
proof of the theorem, see [19].

Theorem 3.15. Let (X,ϕ) be a Smale space. Then Per(X,ϕ) is a dense subset of NW(X,ϕ). In
particular if (X,ϕ) is non-wandering, then Per(X,ϕ) is dense in X.

Theorem 3.16. Let (X,ϕ) be a Smale space. If (X,ϕ) is mixing, then, for every x ∈ X, the sets
Xs(x), Xu(x) and Xh(x) are dense in X. Conversely, if (X,ϕ) is non-wandering and for every x ∈ X
the sets Xs(x), Xu(x) and Xh(x) are dense in X, then (X,ϕ) is mixing.

Proof. Suppose that (X,ϕ) is mixing. To show that Xs(x) and Xu(x) are dense, it is enough to show
that Xs(x) is dense. Let δ > 0 and let y ∈ X. We will show that Xs(x) ∩ B(y, δ) 6= ∅. Let ε > 0
be sufficiently small so that ε < ε

X
and if d(v, w) < ε then d([v, w], w) < δ/2. Let (fnj (x))j∈N be a

subsequence of (fn(x))n∈N which converges to a point x0 ∈ X. Let U = B(x, δ/2) and V = B(x0, ε/2).
Since (X,ϕ) is mixing, there exists a positive integer N such that fn(U) ∩ V 6= ∅ for every n ≥ N .
Since fnj (x) converges to x0, there is a nj ≥ N such that fnj (x) ∈ X(x0, ε/2). Since nj ≥ N , there
is z ∈ U such that fnj (z) ∈ V . It follows that

w := f−nj
(
[fnj (x), fnj (z)]

)
,

is well defined and that fnj (w) ∈ Xs(fnj (x), δ/2). It follows that w ∈ Xs(w).
To show that Xh(x) is dense, we must show that Xs(x) ∩Xu(x) is dense. In fact, we can prove

something stronger: for any x, y ∈ X, Xs(x) ∩ Xu(y) is dense in X. (This will be useful when we
define étale groupoids from the stable and unstable equivalence relations.) Let U be an open subset of
X. Since the bracket map is continuous, there exists an open subset V ⊂ U such that d(v, w) < ε

X
for

every v, w ∈ V for which [V,U ] ⊂ U . Since Xs(x) and Xu(x) are both dense, there exists v ∈ Xs(x)∩V
and w ∈ Xu(X) ∩ V . Then [v, w] is a well-defined point which is in U and Xs(x) ∩ Xu(y). Thus
Xs(x) ∩Xu(y), and hence also Xh(x), is dense.

Conversely, suppose that Xs(x) and Xu(x) are dense. Let U and V be non-empty open sets.
Since (X,ϕ) is by assumption non-wandering, by the previous theorem there exists a periodic point
x ∈ U . Let p be the period of x. Let ε > 0 be sufficiently small so that Xu(x, ε) ⊂ U . The sets
fkp(Xu(x, ε)), k ≥ 1 are increasing in diameter and their union is dense. The same is true for the
sets fkp(Xu(f j(x), ε), k ≥ 1, 1 ≤ j < p. Thus there exists K ≥ 1 such that fkp(Xu(f j(x), ε)) ∩ V is
non-empty for every k ≥ K and every 0 ≤ j < p. Let N = Kp. For n ≥ N , write n = kp+ j for some
k ≥ K and 0 ≤ j ≤ p. Then

fn(U) ∩ V ⊃ fn(Xu(x, ε)) ∩ V = fkp ◦ f j(Xu(x, ε)) ∩ V ⊃ F kp(Xu(f j(x), ε)) ∩ V 6= ∅,

which shows that (X,ϕ) is mixing.

Smale proved his decomposition theorem for Axiom A diffeomorphisms, see [28]. Ruelle defined
Smale spaces as a way of axiomaitzing the behaviour of Axiom A diffeomorphisms, from which we
have the following decomposition theorem, see [24].
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Theorem 3.17 (Smale’s decomposition theorem). Let (X,ϕ) be an irreducible Smale space. Then
there exists m ∈ Z≥0 and subsets X1, . . . , Xm−1 such that

(1) X =
m⊔
i=1

Xi,

(2) ϕ(Xi) = Xi+1 mod m, 0 ≤ i ≤ m− 1,

(3) (Xi, ϕ
m|Xi), 0 ≤ i ≤ m− 1, is a mixing Smale space.

We have the following consequence of Smale’s decomposition theorem.

Proposition 3.18. Let (X,ϕ) be an irreducible Smale space with decomposition into mixing compo-
nents X = tm−1

i=0 Xi. Then

(1) x ∈ Xs(y) if and only if there is i ∈ {0, . . . ,m− 1} such that x, y ∈ Xi and x ∈ Xs
i (y),

(2) x ∈ Xu(y) if and only if there is i ∈ {0, . . . ,m− 1} such that x, y ∈ Xi and x ∈ Xu
i (y),

(3) x ∈ Xh(y) if and only if there is i ∈ {0, . . . ,m− 1} such that x, y ∈ Xi and x ∈ XH
i (y).

Thus

Xs(y) =

m−1⊔

i=0

Xs
i (y), Xu(y) =

m−1⊔

i=0

Xu
i (y) and Xh(y) =

m−1⊔

i=0

Xh
i (y).

An important part of understanding a given topological system (X,ϕ) is understanding the set of
ϕ-invariant Borel measures on X. A Borel measure µ on X is ϕ-invariant if µ(ϕ(B)) = µ(B) for every
Borel set B ⊂ X. In the case of a Smale space, we the following result.

Theorem 3.19 ([25, Theorem 1]). Given an irreducible Smale space (X,ϕ), there exists a unique ϕ-
invariant, entropy-maximizing probability measure µX on X which, for every x ∈ X and 0 < ε < ε

X
,

can be written locally as a product measure supported on Xu(x, ε)×Xs(x, ε).

We call µX the Bowen measure. In the case of a shift of finite type it is the same as the Parry
measure, see for example [16, Section 9.4].

The next theorem summarizes some of the key properties of the Bowen measure and its interaction
with the bracket map.

Theorem 3.20 (see [14, Theeorem 1.1]). Let (X,ϕ) be an irreducible Smale space. Let µX denote
the Bowen measure of (X,ϕ) and, for any x ∈ X, let µsx and µux denote the decomposition µX(A) =
µux × µsx(A) for every A ⊂ B(x, ε

X
). Let λ be defined by h(ϕ) = log(λ), where h(ϕ) is the topological

entropy of (X,ϕ).

(1) For every x ∈ X, µxu and µsx are non-finite regular Borel measures.

(2) Let x ∈ X and ε > 0. Then, for any pair of Borel sets A ⊂ Xu(x, ε) and B ⊂ Xs(x, ε) such that
[A,B] is defined, we have

µX([A,B]) = µux(A)µsx(B).

(3) For every x, y ∈ X, ε > 0 and any Borel set A ⊂ Xu(x, ε) we have

µuy ([A, y]) = µux(A),

whenever d(x, y) and ε are sufficiently small so that [A, y] is defined.

(4) For every x, y ∈ X, ε > 0 and Borel set A ⊂ Xu(x, ε) we have

µuy ([A, y]) = µux(A),

whenever d(x, y) and ε are sufficiently small so that [A, y] is defined.
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(5) For every x, y ∈ X, ε > 0 and Borel set B ⊂ Xs(x, ε) we have

µsy([y,B]) = µsx(B),

whenever d(x, y) and ε are sufficiently small so that [y,B] is defined.

(6) For every x ∈ X we have

µsϕ(x) ◦ ϕ = λ−1µsx and µuϕ(x) ◦ ϕ = µux.

4 Étale groupoids

To construct a C∗-algebra whose input data comes from a Smale space, we first construct étale
groupoids from the three equivalence relations of Section 3. From this, we will construct a convolution
∗-algebra which can be completed into a C∗-algebra. A good introduction to groupoids and their C∗-
algebras can be found in [21] or [27].

Definition 4.1. A groupoid consists of a set G, endowed with a unary operator

·−1 : G→ G,

a distinguished subset G(2) ⊂ G × G called the set of composable pairs, and a partially defined
multiplication

G(2) → G, (γ, α) 7→ γα,

satisfying the following compatibility conditions.

(1) For every γ ∈ G we have (γ−1)−1 = γ,

(2) For every γ, α, β ∈ G, if (γ, α), (α, β) ∈ G(2) then both (γ, αβ) and (γα, β) ∈ G(2) and γ(αβ) =
(γα)β.

(3) For every γ ∈ G, both (γ, γ−1) and (γ−1, γ) are in G(2) and for every (γ, α) ∈ G(2) we have
γ−1γα = α and γαα−1 = γ.

Observe that γ−1γ behaves like a left unit for α whenever (γ, α) ∈ G(2), and similarly, αα−1

behaves like a right unit for g whenever (γ, α) ∈ G(2). For this reason, we refer to such elements as
units and define the space of units to be

G(0) =
{
γ−1γ | γ ∈ G

}
.

We say that γ−1 is the inverse of γ

Given a groupoid G, we define the range and source maps, r, s : G→ G(0) respectively, by

r(γ) = γγ−1, γ ∈ G,

and

s(γ) = γ−1γ, γ ∈ G.

It can be useful to think of elements of G as arrows between elements of G(0): an element γ ∈ G
defines an arrow from its source γ−1γ ∈ G(0) to its range γγ−1 ∈ G(0). Note that if x ∈ G(0) then we
always have r(x) = x = s(x). This can be made more precise by defining a groupoid to be a small
category in which each morphism is an isomorphism. This is equivalent to Definition 4.1.

Example 4.2. Let G be a discrete group. Then the usual operations make G into a groupoid where
G(2) = G×G, and G(0) = {e}.
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Just as for groups, inverses in a groupoid are unique. Indeed, if γ ∈ G and η ∈ G satisfies the
properties of Definition 4.1 (3), then since (γ, η) ∈ G(2) so that

(γ−1γ)η = η = γ−1(γη) = γ−1.

Using the uniqueness of the inverse, a simple calculation allows us to deduce that if (γ, η) ∈ G(2)

then (η−1, γ−1) ∈ G(2) and η−1γ−1(γη)−1. Thus

s(γη) = η−1γ−1γη = η−1η = s(η)

while
r(γη) = γηη−1γ−1 = γ−1γ = r(γ).

Conversely, suppose that γ, η ∈ G and s(γ) = r(η). Then (γ, γ−1γ) ∈ G(2) and (ηη−1, η) ∈ G(2) so
(γ, ηη−1η) = (γ, η) ∈ G(2). Thus

G(2) =
{

(γ, η) ∈ G | s(γ) = r(η)
}
.

Example 4.3. Let R ⊂ X ×X be an equivalence relation. For (x, y) ∈ R. Define (x, y)−1 = (y, x)
and G(2) = {((x, y), (z, w)) ∈ G2 | y = z} and let (x, y)(y, z) = (x, z). Then r(x, y) = (y, y) and
s(x, y) = (x, x), so the unit space G(0) = {(x, x) ∈ X ×X}, which we identify with X.

For any x ∈ X we define

Gx :=
{
γ ∈ G | r(γ) = x

}
, Gx :=

{
γ ∈ G | s(γ) = x

}
, Gxx := Gx ∩Gx.

When G is a groupoid, then there is an equivalence relation on G(0) given by {(s(γ), r(γ)) | γ ∈ G}.
The map γ 7→ (s(γ), r(γ)) is a groupoid morphism which is an isomorphism exactly when G itself is
an equivalence relation. In this case, we say that G is principal.

Definition 4.4. A topological groupoid is a groupoid G endowed with a locally compact topology
which makes the unit space G(0) Hausdorff in the relative topology, and such that the maps

r, s, ·−1 : G→ G,

are continuous, and
G(2) → G, (g, h) 7→ gh

is continuous with respect to the relative topology of the product topology on G×G.

Definition 4.5. Let G be a topological groupoid. If r, s : G → G are local homeomorphisms, then
we say that G is étale.

It is important to note that we ask r, s : G→ G be continuous as maps into the groupoid G, not
just its unit space G(0).

If G is a topological group which we view as a groupoid, then G is étale precisely when G is
discrete. In this sense, the property of a topological groupoid being étale is analogous to a topological
group being discrete.

Let G be a principal groupoid. We say that G is minimal when, for every x ∈ G(0), the set
{y ∈ G(0) | y ∈ r(s−1(x))} is dense in G(0). Thinking of G as an equivalence relation on G(0), this
just means that the equivalence class of x is dense in G(0).

We say that a subset U ⊂ G(0) is invariant if r(GU) ⊂ U , where

GU :=
{
γx | (γ, x) ∈ G(2) ∩G× U

}
.

Since (γ, x) ∈ G(2) if and only if s(γ) = r(x) = x, and s(γx) = s(γ), we have that GU = {γ ∈ G |
s(γ) ∈ U} = s−1(U).

Proposition 4.6. Let G be a principal étale groupoid. The following are equivalent.

(1) G is minimal.

(2) If E ⊂ G(0) is a closed G-invariant subset, then E ∈ {∅, G(0)}.
Proof. Suppose that E ⊂ G(0) is a non-empty proper closed G-invariant subset. Then for any x ∈W ,
the orbit of x must be contained in E and hence is not dense. Thus G is not minimal. Conversely,
if G is minimal and E ⊂ G(0) is a non-empty G-invariant subset, then there exists x ∈ E. But since
[x] ⊂ E, E is closed and [x] is dense, we must have E = G(0).
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4.1 Groupoid C∗-algebras

The construction of C∗-algebras from topological groupoids is due to Renault [21]. Here we give the
construction for étale groupoids, although in fact as long as a topological groupoid admits a so-called
Haar system, both the full and reduced C∗-algebras can be formed. For étale groupoids, things are
simplified because the Haar system is given by counting measures. We refer the reader to [21] for
further details.

Let G be an étale groupoid. Let

Cc(G) :=
{
f : G→ C | f continuous with compact support

}

be the set of continuous functions from G to C with compact support. We equip Cc(G) with the
structure of a ∗-algebra as follows. Addition is defined pointwise. Multiplication is given by the
convolution product

fg(γ) =
∑

{(γ,α)∈G(2)| γα=γ}
f(γ)g(α), f, g ∈ Cc(G), γ ∈ G,

and the involution is given by

f∗(γ) = f(γ−1), f ∈ Cc(G), γ ∈ G.

That the sum in the definition of the convolution product is well defined follows from the fact that
groupoid is étale, which implies that every compactly supported function in fact has finite support.
Indeed, if (γ, α) ∈ G(2) satisfy γα = γ, then γ−1γα = α, so α = γ−1γ. Thus the sum is over all
γ ∈ G such that r(γ) = s(γ−1) = r(γ). Since r is a local homeomorphism, it is in particular locally
one-to-one. Since the support of f is compact, there are only finitely many γ with r(γ) = r(γ) that
are contained within the support of f .

For every x ∈ G(0), we define a ∗-homomorphism

πx : Cc(G)→ B(`2(s−1(x)))

by

πx(f)(ξ)(γ) =
∑

{(γ,α)∈G(2)| γα=γ}
f(γ)ξ(α),

for f ∈ Cc(G), ξ ∈ `2(s−1(x)), γ ∈ s−1(x).
For f ∈ Cc(G), we define a C∗-norm by

‖f‖r := sup
x∈X
‖πx(f)‖,

where the norm on the right hand side is the operator norm in B(`2(s−1(x)).

Definition 4.7. The reduced groupoid C∗-algebra of an étale groupoid G, denoted C∗r(G), is the
completion of Cc(G) with respect to the norm ‖ · ‖r.

One can also construct a full groupoid C∗-algebra by completing Cc(G) with respect to the norm
given by the supremum of norms of all bounded ∗-representations of Cc(G). We denote the full
groupoid C∗-algebra by C∗(G). In general, C∗(G) is “larger” in the sense that we have a surjective
map C∗(G)→ C∗r(G). There can also be other completions of Cc(G) whose lying in between the full
and reduced groupoid C∗-algebras.

5 C∗-algebras of Smale spaces

Let ((X, d), ϕ) be an irreducible Smale space. Recall that two points x, y ∈ X are

• stably equivalent, x ∼s y, if d(ϕn(x), ϕn(x))→ 0 as n→∞,
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• unstably equivalent, x ∼u y, if d(ϕ−n(x), ϕ−n(y))→ 0 as n→∞,

• homoclinic, x ∼h y, if x ∼s y and x ∼u y.

Evidently, each of ∼s, ∼u, ∼h give us equivalence relations on X. Thus we can put groupoid structures
on each of

Gs := {(x, y) | x ∼h y}, Gu := {(x, y) | x ∼u y} and Gh := {(x, y) | x ∼h y},

which are respectively called the stable groupoid, unstable groupoid, and homoclinic groupoid of
(X,ϕ). To construct C∗-algebras, we would like to equip each of these with an étale topology. An
obvious candidate is to equip each set with the relative topology of the product topology on X ×X.
However, these will not in general be étale topologies. In particular, the equivalence classes in Gs and
Gu will not even be countable. To rectify this, we restrict our equivalence classes to what is called
an abstract transversal. This restricts the unit space X to a smaller subset that is more tractable,
but which is “large” enough that it intersects each equivalence class so that we don’t lose too much
information. See [20] for more details.

Definition 5.1. Let (X,ϕ) be an irreducible Smale space. Let P and Q be a finite ϕ-invariant sets
of periodic points of (X,ϕ). Define

Gs(P ) :=
{

(x, y) ∈ X ×X | x ∼s y and x, y ∈ Xu(P )
}
.

Likewise, if Q is a finite ϕ-invariant set of periodic points of (X,ϕ), then we define

Gu(Q) :=
{

(x, y) ∈ X ×X | x ∼u y and x, y ∈ Xs(Q)
}
.

Note that the unit space of Gs(P ) is not X, but Xu(P ), which is no longer compact. Unlike the
equivalence relation Gs the equivalence classes in Gs(P ) are countable.

Suppose that x ∼s y. There exists N ∈ N such that

ϕN (y) ∈ Xs
(
ϕN (x),

ε
X

2

)
and ϕN (x) ∈ Xs

(
ϕn(y),

ε
X

2

)
.

Also, there is 0 < δ ≤ ε
X
/2 such that, for every 0 ≤ n ≤ N we have

ϕn(B(x, δ)) ⊂ B
(
ϕn(x),

ε
X

2

)
.

Shrinking δ if necessary, by the same argument, we have

ϕn(B(y, δ)) ⊂ B
(
ϕn(y),

ε
X

2

)
,

for every 0 ≤ n ≤ N . Let z ∈ Xu(x, δ). Then

[
ϕN (z), ϕN (y)

]
∈ Xu(ϕN (y), ε

X
),

so
ϕ−N

([
ϕN (z), ϕN (y)

])
∈ Xu(y, ε

X
).

This gives us a map hux : Xu(x, δ)→ Xu(y, ε
X

) defined by

hux(z) = ϕ−N
([
ϕN (z), ϕN (y)

])
.

Similarly, there is a map huy : Xu(y, δ)→ Xu(x, ε
X

) defined by

huy (z) = ϕ−N
([
ϕN (z), ϕN (x)

])
.

If x and y are unstably equivalent, an analogous argument gives us a pair of maps hsx : Xs(x, δ)→
Xs(y, ε

X
) and hsy : Xs(y, δ)→ Xs(x, ε

X
) by

hsx(z) = ϕN
([
ϕ−N (z), ϕ−N (y)

])
, z ∈ Xs(x, δ),
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and
hsy(z) = ϕN

([
ϕ−N (z), ϕ−N (x)

])
, z ∈ Xs(y, δ).

By [20], hux : Xu(x, δ)→ Xu(y, δ) is a local homeomorphism, mapping Xu(x, δ) homeomorphically
to a neighbourhood of y, and hence a conjugating homeomorphism in the sense of Ruelle, see [23].

For such a 5-tuple v, w, δ, hux, N as above, the sets

V (x, y, δ, huy , N) :=
{

(huy (z), z) | z ∈ Xu(y, δ), huy (z) ∈ Xu(x, δ)
}
⊂ Gs(P )

are basic sets generating a topology for Gs(P ).

Theorem 5.2 (see, for example, [13, Theorem 2.17]). We have the following properties of Gs(P ) and
the basic sets introduced in the previous paragraph.

(1) The map h is a local homeomorphism;

(2) V (v, w, δ, h,N) gives a neighbourhood base for a topology on Gs(P );

(3) Gs(P ) is an étale groupoid when we use this topology;

(4) the unit space of Gs(P ) is Xu(P ) which is locally compact, but not compact.

The analogous facts hold for Gu(Q).

For Gh, the situation is less complicated, since the equivalence classes are already countable,
without having to restrict to a subset of X. In this case, when x ∼h y, for suitable δ and N we define
mapes hx : B(x, δ)→ B(y, ε

X
) and hy : B(y, δ)→ B(x, ε

X
) by

hx(z) =
[
hux([z, x]), hsx([x, z])

]
, z ∈ B(X, δ),

and
hy(z) =

[
huy ([z, y]), hsy([x, y])

]
, z ∈ B(y, δ).

For such x ∼h y, N , δ, hx and hy, the subsets

V (x, y, hy, δ) =
{

(hy(z), z) | z ∈ B(y, δ), hy(z) ∈ B(x, δ)
}

form a neighbourhood base for an étale topology on Gh.
Since Gs(P ) and Gu(Q) are étale, we can constructed their reduced groupoid C∗-algebras. One

might be concerned that the choice of P and Q will result in different C∗-algebras. Luckily, this is
only the case up to Morita equivalence, which is a slightly weaker version of isomorphism for C∗-
algebras. Here it implies that for any choice of finite ϕ-invariant set of periodic points P , P ′ there is a
∗-isomorphism C∗r(Gs(P ))⊗K ∼= C∗r(Gs(P

′))⊗K, whereK denotes the C∗-algebra of compact operators
on a separable Hilbert space. Morita equivalent C∗-algebras share many properties, including ideal
structure, representation theory, K-theory, and nuclearity. In fact, we also have the following:

Theorem 5.3 ([18, cf. Theorem 3.1]). Let (X,ϕ) be a mixing Smale space and P,Q finite ϕ-invariant
subsets of periodic points. Then C∗r(Gh) and C∗r(Gs(P ))⊗C∗r(Gu(Q)) are Morita equivalent. In fact,

C∗(Gh)⊗K ∼= C∗r(Gs(P ))⊗ C∗r(Gu(Q)).

Note that the theorem in [18] actually refers to the full groupoid C∗-algebras, and the tensor
product there is the maixmal tensor product. The fact that the above is true follow from the fact
that each groupoid is amenable. The notion of amenability for a groupoid was introduced as a
generalization of amenability for a topological group. The interested reader can find the definition
and properties of an amenable groupoid in [1]. Most importantly here, if G is an amenable étale
groupoid then its reduced and full groupoid C∗-algebras coincide and are nuclear. One can also show
the isomorphism directly for the reduced groupoid C∗-algebras by representing them all on the same
Hilbert space, see for example [13]. That the groupoids are amenable is a result of Putnam and
Spielberg [20, Theorem 1.1].
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Theorem 5.4. The groupoids Gh, Gs(P ) and Gu(Q) are amenable, hence the groupoid C∗-algebras
C∗(Gh), C∗(Gs(P )) and C∗(Gu(Q)) are nuclear.

A C∗-algebra A is simple if the only closed, two-sided ideals in A are ∅ and A. When the C∗-algebra
comes from an étale groupoids, we can deduce minimality from the structure of the groupoid.

For a groupoid G the orbit of a point x ∈ G(0) is the set

[x] =
{
r(γ) | γ ∈ G, s(γ) = x

}
.

Note that if G is an equivalence relation, the orbit of x is precisely the equivalence class of x. We
can rephrase the notion of minimality given in the previous section to say that an étale groupoid G is
minimal if [x] is dense in G(0), for every x ∈ G(0).

Theorem 5.5. Let G be a principal étale groupoid. If G is minimal, then C∗r(G) is simple.

This result, together with Theorem 3.16, implies the following:

Corollary 5.6. Let (X,ϕ) be a Smale space, and let P , Q be finite ϕ-invariant subsets of Per(X). If
(X,ϕ) is mixing, then C∗(Gh), C∗(Gs(P )) and C∗(Gu(Q)) are simple.

Recall that Smale’s decomposition theorem says that any irreducible Smale space decomposes into
finitely many mixing components which are cylically permuted by the homeomorphism. This allows
us to determine precisely the ideals of the C∗-algebra of the homoclinic groupoid of an irreducible
Smale space.

Theorem 5.7. Let (X,ϕ) be an irreducible Smale space with decomposition into mixing components

given by X =
m−1⊔
i=0

Xi. Let

Gi,H :=
{

(x, y) ∈ Xi ×Xi | x ∼h y
}
,

0 ≤ i ≤ m− 1. Then

C∗(Gh) ∼= C∗(G0,H)⊕ C∗(G1,H)⊕ · · · ⊕ C∗(Gm−1,H).

Now let us turn to other elements of a Smale space are reflected in the corresponding C∗-algebras.
Let (X,ϕ) be an irreducible Smale space. Let µX denote the Bowen measure of (X,ϕ) and, for

any x ∈ X, let µsx and µux denote the decomposition µX(A) = µuX × µsx(A) for every A ⊂ B(x, ε
X

).
The Bowen measure induces a trace on the C∗-algebras associated to (X,ϕ) as follows.
Let P and Q be finite, ϕ-invariant sets of periodic points. Define measures on the unit spaces

Xs(P ) and Xu(Q) of Gs(P ) and Gu(Q), respectively, by

µs :=
∑

x∈P
µsx and µu :=

∑

x∈Q
µux.

For f ∈ Cc(Gs(P )), define

τs(f) :=

∫

Xu(P )

f(x, x) dµu,

and similarly, for f ∈ Cc(Gu(Q)), define

τu(f) :=

∫

Xs(Q)

f(x, x) dµs.

Since µX is ϕ-invariant, τs and τu define traces on Cc(Gs) and Cc(Gu). These can then be
extended to faithful, semi-finite traces on C∗(Gs(P )) and C∗(Gu(Q)), respectively.

For the groupoid Gh, where the unit space is all of X, we can simply integrate a function in Cc(Gh)
with respect to µX , that is, we define

τh(f) := inf
X
f(x, x) dµX , f ∈ Cc(Gh).

The map τh is bounded and hence extends to a tracial state on C∗(Gh). When (X,ϕ) is mixing, this
is the unique tracial state on C∗(Gh) [12].
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5.1 Classification of homoclinic C∗-algebras of mixing Smale spaces

We saw in Corollary 5.6 that if (X,ϕ) is a mixing Smale space, then the associated groupoid C∗-
algebras are simple. Since they are C∗-algebras of amenable groupoids, they moreover are in the UCT
class [30]. Since X is a metric space, they are moreover separable and in the case of C∗(Gh), unital.
Thus we would like to know if they are classifiable by the Elliott invariant, which requires showing
that they have finite nuclear dimension.

We do so by considering a notion of dimension for the underlying groupoid: dynamic asymptotic
dimension.

Definition 5.8 ([11, Definition 5.1]). We say that G has dynamic asymptotic dimension at most d
if, for every open relatively compact K ⊂ G, there exist open sets U0, . . . , Ud ⊂ G(0) satisfying the
following:

(1) {U0, . . . , Ud} covers s(K) ∪ r(K);

(2) for every i = 0, . . . , d, the groupoid generated by {g ∈ K | s(g), r(g) ∈ Ui} is a relatively
compact sub-groupoid of H.

Theorem 5.9 ([11, Theorem 8.6]). Let X be a locally compact metric space and G ⊂ X ×X an étale
principal groupoid with dynamic asymptotic dimension at most d. Then

dimnuc(C∗r(G)) ≤ (d+ 1)(dimX + 1)− 1.

It follows from the definition of a Smale space (X,ϕ) together with [Mañé, 1979] that X must be
finite dimensional.

Theorem 5.10 ([7, Theorem 3.7]). Let (X,ϕ) be a mixing Smale space and P a set of periodic points
with ϕ(P ) = P . Then Gs(P ) and Gu(P ) have finite dynamic asymptotic dimension.

The proof uses the fact that homeomorphism ϕ induces a groupoid automorphism α : Gs(P ) →
Gs(P ). By repeatedly applying the homeomorphism we can just as well look at αn(K). By choos-
ing large enough n we can assume that for every pair of points x, y ∈ s(K) ∪ r(K) we have that
d(ϕn(x), ϕn(y)) is very small. Then, the groupoid starts to look like X(P ), and we arrive at the the
estimate from the covering dimension of X.

Theorem 5.11 ([7, Corollary 3.8]). Let (X,ϕ) be a mixing Smale space and P a set of periodic points
with ϕ(P ) = P . Then C∗(Gs(P )), C∗(Gu(P )) and C∗(Gh) all have finite nuclear dimension.

Note that for C∗(Gh), the result is not proved using the dynamic asymptotic dimension. However
it holds that

C∗(Gh)⊗K ∼= C∗(Gs)⊗ C∗(Gu),

so the nuclear dimension of C∗(Gh) can be estimated from the nuclear dimension of C∗(Gs(P )) and
C∗(Gu(P )).

Theorem 5.12. Let (X,ϕ) and (Y, ψ) be mixing Smale spaces. Let A denote the homoclinic C∗-
algebra of (X,ϕ) and B the homoclinic C∗-algebra of (Y, ψ). Suppose there is an isomorphism

ψ : Ell(A)→ Ell(B).

Then there is a ∗-isomorphism
Ψ : A→ B,

which is unique up to approximate unitary equivalence and satisfies Ell(Ψ) = ψ.

It turns out that C∗(Gs(P )) and C∗(Gu(P )) always contain notrivial projections [6]. In fact they
have real rank zero, which implies a large supply of projections.

Let p ∈ C∗(Gs(P )) be a nontrivial projection. Then pC∗(Gs(P ))p is a unital C∗-algebra which is
Morita equivalent to C∗(Gs(P )). Hence C∗-algebras of the form pC∗(Gs(P ))p are also classified by
the Elliott invariant as in Theorem 5.12.
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A Basics of C∗-algebras

Definition A.1. A ∗-algebra is an algebra A (which in these notes, will always be over C) equipped
with a map ∗ : A→ A called the involution, satisfying

(a∗)∗ = a, (ab)∗ = b∗a∗,

for every a, b ∈ A.

Let A be a ∗-algebra. We say that an element a ∈ A is

(1) normal if a∗a = aa∗,

(2) self-adjoint if a∗ = a,

(3) a projection if a2 = a = a∗.

If A is unital, we call an element u ∈ A a unitary u∗u = uu∗ = 1A.

Definition A.2. An (abstract) C∗-algebra is a ∗-algebra A which is complete with respect to a
submultiplicative norm ‖ · ‖ satisfing the C∗-equality:

‖a∗a‖ = ‖a‖2 for every a ∈ A.

A Banach ∗-algebra A is both a Banach algebra and a ∗-algebra with the compatibility condition

‖a∗‖ = ‖a‖ for every a ∈ A.

Note that for a unital Banach algebra A, we require that ‖1A‖ = 1. For unital C∗-algebras, this
condition follows automatically from the C∗-equality. We have the following strict inclusion of classes:

{
C∗-algebras

}
$
{

Banach ∗-algebras
}
.

For example, consider

`1(Z) =
{

(xn)n∈Z ⊂ CZ |
∑

n∈Z
|xn| <∞

}

with norm ‖(x)n∈Z‖ =
∑
n ∈ Z|xn|, involution ((xn)n∈Z)∗ = (xn)n∈Z, pointwise addition, and mul-

tiplication defined by (xy)n =
∑
j∈Z xjyn−j . Then `1(Z) is a Banach ∗-algebra, but the norm does

not satisfy the C∗-equality. For example, let x = (xn)n∈Z satisfy x0 = 1, x! = x2 = −1 and xn = 0
otherwise. Then ‖x∗x‖ = 5 but ‖x‖2 = 9. Thus `1(Z) is not a C∗-algebra.

Examples A.3. Some examples of C∗-algebras are given by the following.

(1) Let Mn := Mn(C) be the algebra of n × n matrices over C. The involution sends a matrix to
its adjoint, and the norm is the operator norm:

‖A‖ := sup
{
‖Ax‖Cn | x ∈ Cn, ‖x‖ ≤ 1

}
.

(2) More generally, if H is any Hilbert space, then B(H) is a C∗-algebra when equipped with the
operator norm. In fact, any norm-closed subaglebra A ⊂ B(H) which is self-adjoint (that is,
A∗ = A) is a C∗-algebra. Such a C∗-algebra is said to be concrete.

(3) Let X be a locally compact Hausdorff space and

C0(X) :=
{
f : X → C | f is continuous and vanishes at infinity

}
.

Then C0(X) is a C∗-algebra with pointwise addition and multiplication, involution given by
f∗(x) = f(x) for f ∈ C0(X), x ∈ X, and norm ‖f‖ = sup

x∈X
|f(x)|. This is an example of a

commutative C∗-algebra.
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A.1 Spectrum of an element

Let A be a unital Banach algebra and a ∈ A. The spectrum of a is the set

spec (a) :=
{
λ ∈ C | λ · 1A − a is not invertible

}
,

and the spectral radius of a is the positive real number

r(a) := sup
λ∈spec (a)

|λ|.

We always have that r(a) ≤ ‖a‖.
Let u be a unitary in a unital C∗-algebra A. Then

‖1a‖ = ‖u∗u‖ = ‖u‖2,

so we must have that ‖u‖ = 1. It follows that if λ ∈ spec (a) it must satifsy |λ| ≤ 1. On the other
hand, since u∗u = uu∗ = 1A, we have that u is invertible with u−1 = u∗. It is easy to check that if
λ ∈ spec (u) then λ−1 ∈ spec (u∗). Since u∗ is also a unitary, we must have |λ|−1| ≤ 1, as well. Thus
we see that

spec (u) ⊂ T,

where T denotes the unit circle in the complex plane, T = {λ ∈ C | |λ| = 1}.
Proposition A.4. Let a ∈ Asa := {a ∈ A | a∗ = a}. Then spec (a) ⊂ R.

Proof. In any unital Banach algebra we have

∥∥∥
∞∑

n=0

an

n!

∥∥∥ ≤
∞∑

n=0

‖a‖n
n!

,

which converges in R. It follows that
∞∑
n=0

an

n! converges in A to an element which we will denote ea.

One checks that ϕa : R → A, t 7→ eta is differentiable with derivative aϕa(t) and that ϕa(0) = 1A.
Moreover, ϕa is the unique function with these properties. In particular, if a, b ∈ A and a and
b commute, we must have that ea+b = eaeb. It follows that ea is always invertible with inverse
(ea)−1 = e−a.

Now, if A is a unital C∗-algebra and a ∈ Asa, the eia is invertible with inverse e−ia = e(ia)∗ = (eia)∗.
In other words, eia is a unitary. By our previous observation, spec (eia) ⊂ T. Let λ ∈ spec (a), and
put

b :=

∞∑

n=2

in(a− λ · 1A)n−1

n!
.

Note that b commutes with a−λ · 1A. Since a−λ · 1A is not invertible, neither is eia− eiλ · 1A. Hence
eiλ ∈ spec (eia) ⊂ T, from which it follows that λ ∈ R.

We will make use of the following proposition. For a proof, see for example [17, Theorem 2.1.1].

Proposition A.5. Let a ∈ Asa. Then r(a) = ‖a‖.
As a corollary, we see that, for a C∗-algebra, the norm of an element is completely determined by

spectral information, something is not the case for an arbitrary Banach algebra.

Corollary A.6. If A is a C∗-algebra with respect to the norm ‖ · ‖, then this is the unique norm
C∗-norm making A into a C∗-algebra.

Proof. Let a ∈ A. Then a∗a ∈ Asa, so

‖a‖2 = ‖a∗a‖ = r(a∗a) = sup
λ∈spec (a∗a)

|λ|.

Thus the norm of a depends only on its spectrum, meaning the norm is unique.
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In general, a Banach or C∗-algebra need not have a unit. Examples include C0(X) when X is
locally compact but not compact, or K, the algebra of compact operators on a separable Hilbert
space. If A is non-unital, we need to add a unit to make sense of the spectrum of an element.

Let A be a not-necessarily-unital algebra. Let Ã := A⊕ C as a vector space, and define multipli-
cation by

(a, λ)(b, µ) = (ab+ µa+ λb, λµ), a, b ∈ A, λ, µ ∈ C.

Then Ã is a unital Banach algebra. If A is a ∗-algebra, we can define an involution on Ã by defining
(a, λ)∗ = (a∗, λ). If A is moreover a Banach ∗-algebra with norm ‖ · ‖A, we define a norm on Ã by

‖(a, λ)‖ := ‖a‖A + |λ|, a ∈ A, λ ∈ C.

However, if A is a C∗-algebra, this will not make Ã into a C∗-algebra. To define a C∗-norm on Ã, we
view (a, λ) as a multiplication operator on A, that is,

(a, λ) : A→ A, (a, λ)b 7→ ab+ λb.

Then we equip Ã with the operator norm. In other words,

‖(a, λ)‖ := sup
b∈A, ‖b‖≤1

‖ab+ λb‖A.

When A is a C∗-algebra, we call Ã (with this norm) the minimal unitization of A, or for brevity,

simply the unitzation of A. Note that A↪→Ã is a ∗-perserving isometric algebra embedding, so if
a ∈ A we will write a instead of (a, 0) when we consider it as an element in Ã.

Let A be a non-unital C∗-algebra and let a ∈ A. Then we define the spectrum of a to be the
spectrum of (a, 0) ∈ Ã, that is,

spec (a) =
{
λ ∈ C | λ · 1Ã − a is not invertible in Ã

}
.

Let A and B be C∗-algebras. A ∗-homomorphism is an algebra map ϕ : A → B such that
ϕ(a∗) = ϕ(a)∗ for every a ∈ A. Note that we do not require that ϕ is continuous – this will turn out
to be automatic! If A and B are unital and ϕ(1A) = 1B , then we call ϕ a unital ∗-homomorphism. If

B is unital and ϕ : A→ B is a ∗-homomorphism, then ϕ has a to a unital ∗-homorphism ϕ̃ : Ã→ B,
that is, ϕ̃(a) = ϕ(a) for every a ∈ A and ϕ̃(1Ã) = 1B .

Proposition A.7. A ∗-homomorphism ϕ : A → B between two C∗-algebras A and B is norm-
decreasing. (In particular, ϕ is continuous.)

Proof. Without loss of generality, we may assume that A, B, and ϕ are all unital. Then if a ∈ A is
invertible, ϕ(a) ∈ B is also invertible. It follows that

spec (ϕ(a)) ⊂ spec (a),

for every a ∈ A. it follows from Corollary A.6 that ‖ϕ(a)‖ ≤ ‖a‖.

Corollary A.8. A ∗-homomorphism is injective if and only if it is isometric. Every ∗-isomorphism
is isometric.

A.2 Spectrum of a C∗-algebra

Let A be a Banach algebra. A character on A is an algebra homomorphism τ : A→ C. The character
space, or spectrum of A is the set

Ω(A) :=
{
τ : A→ C | τ a character

}
.

By an ideal in a C∗-algebra, we always mean a closed, self-adjoint, two-sided ideal, unless otherwise
specified.
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Proposition A.9. Let A be a unital commutative C∗-algebra. Then

(i) τ(a) ∈ spec (a) for every a ∈ A,

(ii) ‖τ‖ := sup{|τ(b)| | ‖b‖A ≤ t} = 1,

(iii) Ω(A) 6= ∅ and if A 6∼= C, then τ 7→ ker τ is a bijection between Ω(A) and the maximal ideals
of A.

Proof. Suppose 1A · τ(a)− a is invertible with inverse b. Then

1 = τ(1A) = τ
(
b(1A · τ(a)− a)

)
= τ(b)τ(1A · τ(a)− a) = τ(b)(τ(a)− τ(a)) = τ(b) · 0 = 0,

a contradiction. Thus 1A · τ(a)− a is not invertible, which is to say, τ(a) ∈ spec (a), which shows (i).
For (ii), since τ(b) ∈ spec (b), we have that |τ(b)| ≤ ‖b‖. Thus if ‖b‖ ≤ 1, we have |τ(b)| ≤ 1. Since

τ is an algebra homomorphism, τ(1A) = 1. Thus ‖τ‖ = 1.
For (ii), suppose that A has a proper ideal. Then it is contained in a maximal ideal J ⊂ A. Since

J is maximal, A/J ∼= C. Thus the quotient map π : A→ A/J is a character with ker τ = J . If instead
A has no proper ideals, then every element a ∈ A \ {0} is invertible. Let a be a non-zero element.
Then since spec (a) is non-empty and 0 /∈ spec (a) as a is invertible, we must have that λ ∈ spec (a)
implies λ · 1A − a = 0. It follows that A ∼= C, and this isomorphism gives us a character. Thus Ω(A)
is non-empty.

Conversely, suppose that A 6∼= C and τ ∈ Ω(A). Then ker(τ) is easily seen to be a closed, self-
adjoint, two-sided ideal which is moreover proper since τ(1A) = 1. Thus ker(τ) is contained in a
maximal ideal J . Then

J ∼= A/J ⊂ A/ ker τ ∼= C.

It follows that ker τ = J , hence is maximal.

Theorem A.10. Let A be a commutative Banach algebra. Then Ω(A) is locally compact and Haus-
dorff with respect to the weak∗-topology. If A is unital, then Ω(A) is compact.

Proof. By Proposition A.9 (ii), we see that Ω(A) \ {0} is a weak∗-closed subset of the closed unit
ball of A∗, the continuous linear dual of A. By the Banach–Alaoglu theorem, Ω(A) \ {0} is compact,
whence Ω(A) is locally compact. If A is unital, 0 is not a character, so Ω(A) is compact.

Let A be a commutative Banach algebra and let a ∈ A. Define

â : A∗ 7→ C

by

â(ϕ) = ϕ(a).

Then Â ∈ C0(Ω(A). We call â the Gelfand transform of a, and the map

Γ : A→ C0(Ω(A)), a 7→ â

is called the Gelfand transform.

Theorem A.11. Let A be a commutative Banach algebra with non-empty character space. Then Γ
is a norm-decreasing homomorphism and r(a) = ‖â‖.

Proof. It is straightforward to check that Γ is a homomorphism. We have

r(a) = sup
λ∈spec (a)

|λ| = sup
τ∈Ω(A)

|τ(a)| = sup
τ∈Ω(A)

|â(τ)| = ‖â‖.

Since r(a) ≤ ‖a‖, we see that Γ is norm-decreasing.
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Theorem A.12. Let A be a unital, commutative Banach algebra. Let a ∈ A and let B ⊂ A be the
Banach subalgebra generated by a and 1A. Then B is unital and commutative and

â : Ω(B)→ spec (a)

is a homeomorphism.

If X is a locally compact Hausdorff space and x ∈ X, define

evx : C0(X)→ C

by
evx(f) = f(x).

It is easy to see that evx ∈ Ω(C0(X)).

Theorem A.13. Let X be a compact Hausdorff space. Then

Ω : X → Ω(C(X))

is a homeomorphism.

Proof. Let (xλ)Λ ⊂ X be a net converging to x ∈ X. Then for every f ∈ C(X),

evxλ(f) = f(xλ)→ f(x) = evx(f).

Thus evxλ → evx in the weak∗ topology, showing that the map Ω is continuous.
To show that Ω is injective, suppose that x 6= y. Then there exists f ∈ C() such that f(x) = 1

and f(y) = 0. Hence evx(f) 6= evy(f) and therefore evx 6= evy.
For surjectivity, let τ ∈ Ω(C(X)). We will show that ker τ separates points. Suppose that x 6= y.

Then as before, there exists f ∈ C(X) such that f(x) = 1 and f(y) = 0. Observe that f−τ(f) ∈ ker τ .
Moreover,

(f − τ(f))(x) 6= (f − τ(f))(y).

By the Stone–Weierstrass theorem, there exists z ∈ X such that f(z) = 0 for every f ∈ ker τ . Thus
f(z) = τ(f) for every f ∈ C(X). Thus τ = evz, and we have shown that Ω is surjective.

Since X is a compact Hausdorff space and Ω is a continuous bijection, it follows that Ω must be
a homeomorphism.

For what follows, we will use the observation: If A is a ∗-algebra and a ∈ A, then there exist
b, c ∈ Asa such that a = b+ ic and bc = cb. (We take b = (a+ a∗)/2 and c = (a− a∗)/2).

Theorem A.14 (Gelfand–Naimark). Let A be a commutative C∗-algebra. Then the Gelfand transform

Γ : A→ C0(Ω(A)), a 7→ â

is a ∗-isomorphism (in particular, it is isometric).

Proof. Let τ ∈ Ω(A). If a ∈ A is self-adjoint, then spec (a) ⊂ R, so by Proposition A.9 (i), τ(a) ∈ R.
If a ∈ A, let b, c ∈ Asa satisfy a = b+ ic. Then

τ(a∗) = τ(b∗ − ic∗) = τ(b− ic) = τ(b)− iτ(c) = τ(b) + iτ(c) = τ(a).

Thus Γ(a∗) = â∗ = (â)∗, from which it follows that Γ is a ∗-homomorphism. This implies that

‖â‖2 = ‖â∗â‖ = ‖â∗a‖ = r(a∗a) = ‖a∗a‖ = ‖a‖2,

showing that Γ is isometric and hence injective. Surjectivity follows from the Stone–Weierstrass
theorem: Γ(A) separates points and contains function that do not simultaneously vanish on Ω(A).
Thus Γ(A) ∼= C0(Ω(A)).
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Theorem A.15. Let A be a unital C∗-algebra and a ∈ A normal. Then

γ : C(spec (a))→ A, (z 7→ z) 7→ a

is an injective (hence isometric) ∗-homomorphism and

γ(C(spec (a))) ∼= C∗(a, 1a) ⊂ A,

where C∗(a, 1a) denotes the C∗-subalgebra of A generated by a and 1A.

Proof. Since A is normal, C∗(a, 1A) is commutative. Thus

Γ : C∗(a, 1A)→ C(Ω(C∗(a, 1A)))

is a ∗-isomorphism. Since
h : Ω(C∗(a, 1A))→ spec (a)

is a homeomorphism, the map

ψ : C(spec (a))→ C(Ω(C∗(a, 1A)))

defined by
ψ(f) = f ◦ h

is a ∗-isomorphism. Put γ := Γ−1 ◦ ψ. Since C∗(a, 1A) is generated by a and 1A, we see that γ is the
unique unital ∗-homomorphism satisfying γ(f) = a, where f(z) = z for every z ∈ spec (a). Thus γ is
an isometric ∗-homomorphism with

γ(C(spec (a))) = C∗(a, 1A).

Let p ∈ C[z1, z2] be a polynomial in two commuting variables. Then if A is an algebra and a, b ∈ A
commute, p(a, b) defines an element in A. In particular, if A is a C∗-algebra and a ∈ A∗ is normal,
p(a, a∗) ∈ A. Moreover,

spec (p(a∗a)) = p(spec (a), spec (a∗)) =
{
p(λ, λ) | λ ∈ spec (a)

}
.

Since polynomials are dense in C(spec (a)), using Theorem A.15, we can define, for any f ∈ C(spec (a))
an element

f(a) = γ(f) ∈ C∗(a, 1A) ⊂ A.
This is called the continuous functional calculus.

The following is called the spectral mapping theorem:

Theorem A.16. Let A be a C∗-algebra and a ∈ A normal. Then, for any f ∈ C0(spec (a)), the
element f(z) ∈ A is also normal and

spec (f(a)) = f(spec (a)).

Furthermore, if g ∈ C0(spec (f(a))), then

g(f(a)) = g ◦ f(a).

Definition A.17. Let A be a C∗-algebra. We say that a ∈ A is positive if a is self-adjoint and
spec (a) ⊂ [0,∞).

For example, if f ∈ C0(X) where X is a locally compact Hausdorff space, then f is positive if and
only if f(x) ≥ 0 for every x ∈ X.

Positivity allows us to define a partial order on the self-adjoint elements in a C∗-algebra A: Let
a, b ∈ Asa. We define ≤ by putting a ≤ b if and only if b − a is positive. Now, using the functional
calculus we can prove things like the following.
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• Every positive element has a unique positive square root: let a ≥ 0 and identify C∗(a, 1A) with
C(spec (a)), which maps a to the f(z) = z. Then define

√
a :=

√
f(a).

• If A is unital, it is spanned by its unitaries: Since A is spanned by the self-adjoint elements, it
is enough to show that the norm one elements of Asa is spanned by unitaries. If a ∈ Asa and
‖a‖ = 1, then a2 and 1−a2 are both positive. It follows that

√
1− a2 ∈ A. Let u1 = a−i

√
1− a2

and u2 = a+ i
√

1− a2. Then u1 and u2 are unitaries and a = u1/2 + u2/2.

• If a ∈ Asa, then there are b, c ≥ 0 such that a = b − c: let f(x) = max{0, x} and g(x) =
max{−x, 0}. Then f(a), g(a) ≥ 0 and a = f(a) − g(a). Note that we also have f(a)g(a) =
g(a)f(a) = 0.

Theorem A.18. For every a ∈ A, the element a∗a is positive.

Proof. Suppose that −a∗a is positive. Since spec (−a∗a) = spec (−aa∗) we must also have that −aa∗
is positive. Write a = b+ ic with a, b ∈ Asa and ab = ba. Then

a∗a = 2b2 + 2c2 − a∗a,

which is positive since 2b2 + 2c2 and −a∗a are both positive (that the sum of two positive commuting
elements is again positive follows from the Gelfand–Naimark theorem). Thus a∗a = 0, thus ‖a∗a‖ = 0
hence ‖a‖2 = 0, so a = 0, in which case a is positive. Otherwise, a 6= 0. Write a∗a = b − c for b, c
positive and bc = cb = 0. Then

−(ac)∗(ac) = −ca∗ac = −c(b− c)c = c3 ≥ 0,

so ac = 0 by the above. Hence c2 = a∗ac = 0. Thus c = 0 and a∗a = b is positive.

The notion of positivity is very important in the theory of C∗-algebra. For a C∗-algebra A, we
denote the set of positive elements by A+.

Let A and B be C∗-algebras. A linear map ϕ : A → B is called positive if ϕ(A+) ⊂ B+. Note
that any ∗-homomorphism is positive. If B = C, and ϕ is positive, then we call ϕ a positive linear
functional. A positive linear is called a state if ‖ϕ‖ = 1. (Here ‖ϕ‖ = sup

‖a‖≤1

|ϕ(a)|.) A positive linear

functional is called a trace if ϕ(ab) = ϕ(ba) for every a, b ∈ A and a tracial state if ϕ is both a state
and trace. We denote the state space of A by S(A), and the tracial state space of A by T (A). A
positive linear function ϕ : A→ C is faithful if ϕ(a∗a) = 0 implies that a = 0.

Theorem A.19. Any positive linear functional is bounded.

Proof. Suppose not. Then there is a sequence (an)n∈N in A with ‖an‖ ≤ 1 for every n ∈ N and such

that |ϕ(an)| → ∞ as n→∞. Since ‖an‖ ≤ 1, we have that
∞∑
n=2

an/2n converges to some b ∈ A. But

then

ϕ(b) = ϕ
( ∞∑

n=2

an

2n

)
≥ ϕ

( N∑

n=2

an

2n

)
> N for every N ∈ N,

which is impossible. Thus ϕ must be bounded.

Using this, one can show that positive linear functionals satisfy the Cauchy–Schwarz inequality:

|ϕ(a∗b)|2 ≤ ϕ(a∗a)ϕ(b∗b) for every a, b ∈ A.

Definition A.20. Let A be a C∗-algebra. An approximate unit for A is an increasing net (uλ)Λ ⊂ A+

such that
lim
Λ
auλ = lim

Λ
uλa = a,

for every a ∈ A.

Every C∗-algebra contains an approximate unit.
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Theorem A.21. Let A be a C∗-algebra and (uλ)Λ an approximate unit. Then ϕ ∈ A∗ is positive if
and only if lim

Λ
ϕ(uλ) = ‖ϕ‖. In particular, if A is unital then ϕ is positive if and only if ϕ(1A) = ‖ϕ‖.

The idea of the proof is as follows. For one direction, assume that ϕ is positive. Then we use
boundedness to show that lim

Λ
ϕ(uλ) = r ∈ R+, r ≤ 1 and thus r ≤ ‖ϕ‖. Then use the Cauchy–

Schwarz inequality to show that ‖ϕ‖2 ≤ r‖ϕ‖ so that ‖ϕ‖ = r. For the other direction, suppose that
a is self-adjoint. Then we have ϕ(a) ∈ R. If a ∈ A+ with ‖a‖ ≤ 1, then uλ − a is self-adjoint and
uλ − a ≤ uλ. Thus limϕ(uλ − a) ≤ ‖ϕ‖ so ϕ(a) ≥ 0.

Corollary A.22. If A is non-unital and ϕ : A → C is a positive linear functional, then there is a
unique positive linear functional ϕ̃ : Ã→ C, extending ϕ.

In fact, with a little more work, the Hahn–Banach theorem gives us the following:

Proposition A.23. Let A be a C∗-algebra and B ⊂ A a C∗-subalgebra. Then every positive linear
functional

ϕ : B → C

admits an extension
ϕ̃ : A→ C.

Proposition A.24. Let A be a non-zero C∗-algebra and a ∈ A a normal element. The there exists
ϕ ∈ S(A) such that ϕ(a) = ‖a‖.

Proof. It follows from Corollary A.22 that we may assume that B and A are unital. Let B ⊂ A be
the C∗-subalgebra generated by a and 1A, B = C∗(a, 1A). Since B is commutative, â ∈ C(Ω(B))
such that ϕ(a) = â(ϕ) = ‖a‖. Since ϕ(1A) = 1, there exists a positive extension ϕ̃ : A → C and
ϕ(a) = ‖a‖.

A ∗-representation of a C∗-algebra A is a pair (H,π), where H is a Hilbert space and

π : A→ B(H)

is a ∗-homomorphism. When π is injective, we say that the representation is faithful.
Let ϕ : A→ C be a positive linear functional. Let

Nϕ :=
{
a ∈ A | ϕ(a∗a) = 0

}
.

Then Nϕ is a closed left ideal in A (one can check this using the Cauchy–Schwarz inequality). Define

〈 · , · 〉 : A/Nϕ ×A/Nϕ → C

by
〈a+Nϕ, b+Nϕ〉 = ϕ(a∗b).

This defines an inner product on A/Nϕ, allowing us to define a Hilbert space

Hϕ := A/Nϕ,

where the closure is respect to the norm induced by the inner product.
For a ∈ A, define

πϕ(a) : A/Nϕ → A/Nϕ

by
πϕ(a)(b+Nϕ) = ab+Nϕ.

One can show that πϕ is bounded and hence extends to a bounded operator πϕ : Hϕ → Hϕ. Define

πϕ : A→ B(Hϕ), a 7→ πϕ(a).

This is a ∗-homomorphism, hence (Hϕ, πϕ) is a ∗-representation of A.
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Definition A.25. Let A be a C∗-algebra and ϕ : A → C be a positive linear functional. The
representation (Hϕ, πϕ) is called the Gelfand–Naimark–Segal (GNS) representation of A associated
to ϕ.

Given a family (Hλ, πλ)λ∈Λ of representations, we define their direct sum by

⊕

λ∈Λ

πλ : A→ B
(⊕

λ∈Λ

Hλ

)
, a 7→ (πλ(aλ))λ∈Λ.

The representation
( ⊕
ϕ∈S(A)

Hϕ,
⊕

ϕ∈S(A)

πϕ
)

is called the universal representation of A.

Theorem A.26 (Gelfand–Naimark). Let A be a C∗-algebra. Then the universal representation of A
is faithful.

Proof. A direct sum representation is faithful if there exists λ ∈ Λ such that πλ(a) 6= 0. For every
a ∈ A, there exists ϕ ∈ A∗ such that ϕ(a) = ‖a‖. Thus πϕ(a) 6= 0.

B Further structural properties

In the first Appendix, we developed the basic C∗-algebra theory. In particular we saw that every com-
mutative C∗-algebra is, up to ∗-isomorphism, the algebra of functions on a locally compact Hausdorff
space. We also saw that, up to ∗-isomorphism, every abstract C∗-algebra is concrete, that is, it is a
closed self-adjoint subalgbera of B(H) for some Hilbert space H. In this Appendix, we briefly mention
further structural properties.

Let A be a C∗-algebra. A trace τ : A → C is a positive linear functional satisfying τ(ab) = τ(ba)
for every a, b ∈ A. If ‖τ‖ = 1 then we call τ tracial state. If A is a unital C∗-algebra, the tracial state
space is the set

T (A) :=
{
τ : A→ C | τ a tracial state

}
.

The tracial state space is an important invariant for C∗-algebras.

Example B.1.

(i) Let A = Mn. Then T (A) = {tr} where tr denotes the normalized trace of a matrix.

(ii) Let A = C(X). Then any state is a tracial state since C(X) is commutative.

Given a unital C∗-algebra, the tracial state space can be equipped with the weak-∗ topology. With
respect to this topology, T (A) is a Choquet simplex, see [26, Theorem 3.1.18].

Definition B.2. Let A and B be C∗-algebras. A linear map ϕ : A→ B is positive if ϕ(E∩A+) ⊂ B+.
For any map ϕ : A→ B and n ∈ N we can define ϕ(n) : Mn(A)→ Mn(B) by applying ϕ entry-wise.
If ϕ(n) : Mn(A)→Mn(B) is positive for every n ∈ N then we say ϕ is completely positive (c.p.).

If ϕ is also contractive, then we say ϕ is completely positive contractive (c.p.c.), and if ϕ is unital,
we say it is a unital completely positive map (u.c.p.).

Definition B.3. A C∗-algebra A has the completely positive approximation property if, for every
finite subset F ⊂ A and every ε > 0 there exist a finite dimensional C∗-algebra F and completely
positive contraction ψ : A→ F and ϕ : F → A such that ‖ϕ ◦ ψ(a)− a‖ < ε.

By results of Choi and Effros [5] as well as Kirchberg [15], a C∗-algebra A has the completely
positive approximation property if and only if A is nuclear. A C∗-algebra A is nuclear if the algebraic
tensor product of A with any other C∗-algebra B has a unique C∗-completion.

One can think of the completely positive approximation property as the noncommutative analogue
of a topological space admitting partitions of unity. This leads to the question of whether one can
refine the notion of the completely positive approximation property to a noncommutative analogue
of covering dimension. This was the motivation behind the introduction of the nuclear dimension
in [31].
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Definition B.4. Let ϕ be a completely positive contractive map ϕ : A→ B. We say that ϕ is order
zero if for any a, b ∈ A+ with ab = ba = 0, we have ϕ(a)ϕ(b) = 0.

Definition B.5. Let A be a separable C∗-algebra. We say that A has nuclear dimension d, written
dimnucA = d, if d is the least integer satisfying the following: For every finite subset F ⊂ A and every
ε > 0 there are a finite-dimensional, C∗-algebra with d+ 1 ideals, F = F0 ⊕ · · · ⊕ Fd, and completely
positive maps ψ : A → F and ϕ : F → A such that ψ is contractive, ϕ|Fn are completely positive
contractive order zero maps and

‖ϕ ◦ ψ(a)− a‖ < ε for every a ∈ F .

If no such d exists, then we say dimnucA =∞.
We are interested in simple, separable, unital, infinite dimensional C∗-algebras which have finite

nuclear dimension because they can be classified by the so-called Elliott invariant. The Elliott invariant
of a C∗-algebra A is given by

Ell(A) :=
(
K0(A),K0(A)+, [1A],K1(A), T (A), ρ

)
,

where (K0(A),K0(A)+, [1A],K1(A)) is the (pointed, ordered) K-theory of A, T (A) the tracial state
simplex, and ρ : K0(A) × T (A) → R a pairing map defined by ρ([p] − [q], τ) = τ(p) − τ(q), for τ the
(non-normalized) inflation of a tracial state to a suitable matrix algebra over A. The K-theory of a
C∗-algebra A consists of two abelian groups, K0 and K1, the former is derived from an equivalence
relation on projections in matrix algebras over A, while the later comes from equivalence classes of
unitaries in matrix algebras over A. Since the self-adjoint elements of a C∗-algebra are partially
ordered, the K0-group can also be partially ordered, and here K0(A)+ refers to the positive cone of
the K0-group. Finally [1A] refers to the K0 class of the unit of A.

Theorem B.6 (see, for example, [2, 4, 8–10, 29]). Let A and B be separable, unital, simple, infinite-
dimensional C∗-algebras with finite nuclear dimension and which satisfy the UCT. Suppose there is
an isomorphism

ψ : Ell(A)→ Ell(B).

Then there is a ∗-isomorphism
Ψ : A→ B,

which is unique up to approximate unitary equivalence and satisfies Ell(Ψ) = ψ.

The UCT refers to the Universal Coefficient Theorem of Rosenberg and Schochet [22]. Loosely
speaking, it allows one to lift information from KK-theory to the level of K-theory. Every known
nuclear algebra satisfies the UCT. In particular the UCT is satisfied for all C∗-algebras in this note.
However, it remains an important open problem to determine whether nuclearity implies the UCT.
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